Skip to main content
Log in

Solid–Liquid Phase Transition in the Octadecanoic Acid Film Adsorbed on the Toluene–Water Interface

  • STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The structure of the soluble protonated (pH = 2) octadecanoic acid film adsorbed on the saturated hydrocarbon (n-hexane)–water and aromatic hydrocarbon (toluene)–water interfaces is studied by X-ray reflectometry using synchrotron radiation. The experimental data demonstrate that a solid phase of a Gibbs monolayer 26 ± 1 Å thick, in which aliphatic tails are perpendicular to the surface and the area per molecule is A = 18 ± 2 Å2, is formed in the film at the n-hexane–water interface. The solid monolayer on the toluene–water interface in the adsorbed film melts when temperature increases, and this transition is caused by disordering of the hydrocarbon tails of the acid. During the solid–liquid transition, the Gibbs monolayer thickness remains almost the same, 22 ± 1 Å. In the solid phase, we have A = 20 ± 2 Å2, and the angle of deviation of the molecular tails from the normal to the surface is about 30°. The density of the liquid monolayer phase with A = 24 ± 2 Å2 corresponds to liquid n-octadecane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. W. M. Gelbart, A. Ben-Shaul, and D. Roux, Micelles, Membranes, Microemulsions, and Monolayers (Springer, New York, 1994).

    Book  Google Scholar 

  2. M. Lin, J. L. Ferpo, P. Mansaura, and J. F. Baret, J. Chem. Phys. 71, 2202 (1979).

    Article  ADS  Google Scholar 

  3. Y. Hayami, A. Uemura, M. Ikeda, M. Aratono, and K. Motomura, J. Colloid Interface Sci. 172, 142 (1995).

    Article  ADS  Google Scholar 

  4. J. C. Conboy, M. C. Messmer, and G. L. Richmond, J. Phys. Chem. 100, 7617 (1996).

    Article  Google Scholar 

  5. T. Takiue, T. Matsuo, N. Ikeda, K. Motomura, and M. Aratono, J. Phys. Chem. B 102, 4906 (1998).

    Article  Google Scholar 

  6. S. Uredat and G. Findenegg, Langmuir 15, 1108 (1999).

    Article  Google Scholar 

  7. D. M. Mitrinovic, Z. Zhang, S. M. Williams, Z. Huang, and M. L. Schlossman, J. Phys. Chem. B 103, 1779 (1999).

    Article  Google Scholar 

  8. Z. Zhang, D. M. Mitrinovic, S. M. Williams, Z. Huang, and M. L. Schlossman, J. Chem. Phys. 110, 7421 (1999).

    Article  ADS  Google Scholar 

  9. M. L. Schlossman, M. Li, D. M. Mitrinovic, and A. M. Tikhonov, High Perform. Polym. 12, 551 (2000).

    Article  Google Scholar 

  10. S. V. Pingali, T. Takiue, G. Guangming, A. M. Tikhonov, N. Ikeda, M. Aratono, and M. L. Schlossman, J. Dispers. Sci. Technol. 27, 715 (2006).

    Article  Google Scholar 

  11. M. L. Schlossman and A. M. Tikhonov, Ann. Rev. Phys. Chem. 59, 153 (2008).

    Article  ADS  Google Scholar 

  12. A. M. Tikhonov, JETP Lett. 102, 552 (2015).

    Article  ADS  Google Scholar 

  13. S. Zarkar, V. Pauchard, U. Farooq, A. Couzis, and S. Banerjee, Langmuir 31, 4878 (2015).

    Article  Google Scholar 

  14. A. Goebel and K. Lunkenheimer, Langmuir 13, 369 (1997).

    Article  Google Scholar 

  15. T. Takiue, A. Yanata, N. Ikeda, K. Motomura, and M. Aratono, J. Phys. Chem. 100, 13743 (1996).

    Article  Google Scholar 

  16. A. M. Tikhonov, D. M. Mitrinovic, M. Li, Z. Huang, and M. L. Schlossman, J. Phys. Chem. B 104, 6336 (2000).

    Article  Google Scholar 

  17. A. W. Adamson, Physical Chemistry of Surfaces, 3rd ed. (Wiley, New York, 1976).

    Google Scholar 

  18. A. M. Tikhonov and M. L. Schlossman, J. Phys.: Condens. Matter 19, 375101 (2007).

    Google Scholar 

  19. A. M. Tikhonov, JETP Lett. 104, 309 (2016).

    Article  ADS  Google Scholar 

  20. M. L. Schlossman, D. Synal, Y. Guan, M. Meron, G. Shea-McCarthy, Z. Huang, A. Acero, S. M. Williams, S. A. Rice, and P. J. Viccaro, Rev. Sci. Instrum. 68, 4372 (1997).

    Article  ADS  Google Scholar 

  21. L. Hanley, Y. Choi, E. R. Fuoco, F. A. Akin, M. B. J. Wijesundara, M. Li, A. M. Tikhonov, and M. L. Schlossman, Nucl. Instrum. Methods Phys. Res. B 203, 116 (2003).

    Article  ADS  Google Scholar 

  22. A. M. Tikhonov, J. Phys. Chem. B 110, 2746 (2006).

    Article  Google Scholar 

  23. A. M. Tikhonov, J. Chem. Phys 124, 164704 (2006).

    Article  ADS  Google Scholar 

  24. J. Koo, S. Park, S. Satija, A. M. Tikhonov, J. C. Sokolov, M. H. Rafailovich, and T. Koga, J. Colloid Interface Sci. 318, 103 (2008).

    Article  ADS  Google Scholar 

  25. A. M. Tikhonov, J. Chem. Phys. 130, 024512 (2009).

    Article  ADS  Google Scholar 

  26. F. A. Akin, I. Jang, M. L. Schlossman, S. B. Sinnott, G. Zajac, E. R. Fuoco, M. B. J. Wijesundara, M. Li, A. M. Tikhonov, S. V. Pingali, A. T. Wroble, and L. Hanley, J. Phys. Chem. B 108, 9656 (2004).

    Article  Google Scholar 

  27. F. P. Buff, R. A. Lovett, and F. H. Stillinger, Phys. Rev. Lett. 15, 621 (1965).

    Article  ADS  Google Scholar 

  28. E. S. Wu and W. W. Webb, Phys. Rev. A 8, 2065 (1973).

    Article  ADS  Google Scholar 

  29. J. D. Weeks, J. Chem. Phys. 67, 3106 (1977).

    Article  ADS  Google Scholar 

  30. A. Braslau, M. Deutsch, P. S. Pershan, A. H. Weiss, J. Als-Nielsen, and J. Bohr, Phys. Rev. Lett. 54, 114 (1985).

    Article  ADS  Google Scholar 

  31. A. Braslau, P. S. Pershan, G. Swislow, B. M. Ocko, and J. Als-Nielsen, Phys. Rev. A 38, 2457 (1988).

    Article  ADS  Google Scholar 

  32. D. K. Schwartz, M. L. Schlossman, E. H. Kawamoto, G. J. Kellogg, P. S. Pershan, and B. M. Ocko, Phys. Rev. A 41, 5687 (1990).

    Article  ADS  Google Scholar 

  33. J. Daillant, L. Bosio, B. Harzallah, and J. J. Benattar, J. Phys. II 1, 149 (1991).

    Google Scholar 

  34. L. Nevot and P. Croce, Rev. Phys. Appl. 15, 761 (1980).

    Article  Google Scholar 

  35. S. K. Sinha, E. B. Sirota, S. Garoff, and H. B. Stanley, Phys. Rev. B 38, 2297 (1988).

    Article  ADS  Google Scholar 

  36. D. M. Small, The Physical Chemistry of Lipids (Plenum, New York, 1986).

    Book  Google Scholar 

  37. K. Motomura, N. Matubayasi, M. Aratono, and R. Matuura, J. Colloid Interface Sci. 64, 356 (1978).

    Article  ADS  Google Scholar 

  38. M. Aratono, T. Takiue, N. Ikeda, A. Nakamura, and K. Motomura, J. Phys. Chem. 97, 5141 (1993).

    Article  Google Scholar 

  39. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1995; Pergamon, Oxford, 1980).

  40. V. I. Marchenko, Sov. Phys. JETP 54, 605 (1981).

    Google Scholar 

  41. V. I. Marchenko, JETP Lett. 33, 381 (1981).

    ADS  Google Scholar 

  42. D. P. Cistola, D. M. Small, and J. A. Hamilton, J. Lipid Res. 23, 795 (1982).

    Google Scholar 

  43. A. Pockels, Nature (London, U.K.) 43, 437 (1891).

    Google Scholar 

  44. I. Langmuir, J. Am. Chem. Soc. 39, 354 (1917).

    Article  Google Scholar 

  45. I. R. Peterson, G. Brezesinski, B. Struth, and E. Scalas, J. Phys. Chem. B 102, 9437 (1998).

    Article  Google Scholar 

  46. D. R. Nelson and B. I. Halperin, Phys. Rev. B 19, 2457 (1979).

    Article  ADS  Google Scholar 

  47. A. Müller, Proc. R. Soc., Ser. A 138, 514 (1932).

  48. E. B. Sirota, Langmuir 13, 3849 (1997).

    Article  Google Scholar 

  49. E. N. Kotel’nikova and S. K. Filatov, Crystal Chemistry of Paraphines (Zh. Neva, St. Petersburg, 2002) [in Russian].

    Google Scholar 

  50. A. M. Tikhonov, H. Patel, S. Garde, and M. L. Schlossman, J. Phys. Chem. B 110, 19093 (2006).

    Article  Google Scholar 

  51. M. Li, A. M. Tikhonov, and M. L. Schlossman, J. Europhys. Lett. 58, 80 (2002).

    Article  ADS  Google Scholar 

  52. A. M. Tikhonov, S. V. Pingali, and M. L. Schlossman, J. Chem. Phys. 120, 11822 (2004).

    Article  ADS  Google Scholar 

  53. T. Takiue, T. Tottori, K. Tatsuta, H. Matsubara, H. Tanida, K. Nitta, T. Uruga, and M. Aratono, J. Phys. Chem. B 116, 13739 (2012).

    Article  Google Scholar 

  54. Q. Lei and C. D. Bain, Phys. Rev. Lett. 92, 176103 (2004).

    Article  ADS  Google Scholar 

  55. L. Tamam, D. Pontoni, Z. Sapir, Sh. Yefet, E. Sloutskin, B. M. Ocko, H. Reichert, and M. Deutsch, Proc. Natl. Acad. Sci. 108, 5522 (2011).

    Article  ADS  Google Scholar 

  56. Yu. Tokiwa, H. Sakamoto, T. Takiue, M. Aratono, and H. Matsubara, J. Phys. Chem. B 119, 6235 (2015).

    Article  Google Scholar 

  57. A. M. Tikhonov, JETP Lett. 108, 71 (2018).

  58. R. Z. Safieva, Petroleum Physical Chemistry: Physicochemical Principles of Oil Processing Technology (Khimiya, Moscow, 1998) [in Russian].

    Google Scholar 

  59. K. Akbarzadeh, A. Hammami, A. Kharrat, D. Zhan, S. Allenson, J. Creek, S. Kabir, A. J. Jamaluddin, A. G. Marshall, R. P. Rodgers, O. C. Mullins, and T. Solbakken, Oilfield Rev. 19 (2), 22 (2007).

    Google Scholar 

  60. O. C. Mullins, Ann. Rev. Anal. Chem. 4, 393 (2011).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work at NSLS was supported by the United States Department of Energy, project no. #DE-AC02-98CH10886. The work at the X19C station was supported by ChemMatCARS, University of Chicago, University of Illinois at Chicago, and State University of New York at Stony Brook. The theoretical part of the work (Sections 3, 4) was supported by the Russian Science Foundation, project no. 18-12-00108.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Tikhonov.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tikhonov, A.M. Solid–Liquid Phase Transition in the Octadecanoic Acid Film Adsorbed on the Toluene–Water Interface. J. Exp. Theor. Phys. 127, 797–802 (2018). https://doi.org/10.1134/S1063776118100102

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776118100102

Keywords

Navigation