Skip to main content
Log in

Temperature Dependence of Paramagnetic Critical Magnetic Field in Disordered Attractive Hubbard Model

  • ELECTRONIC PROPERTIES OF SOLID
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Within the generalized DMFT+Σ approach, we study disorder effects in the temperature dependence of paramagnetic critical magnetic field Hcp(T) for Hubbard model with attractive interaction. We consider the wide range of attraction potentials U—from the weak coupling limit, when superconductivity is described by BCS model, up to the limit of very strong coupling, when superconducting transition is related to Bose–Einstein condensation (BEC) of compact Cooper pairs. The growth of the coupling strength leads to the rapid growth of Hcp(T) at all temperatures. However, at low temperatures, paramagnetic critical magnetic field Hcp grows with U much more slowly, than the orbital critical field, and in BCS limit, the main contribution to the upper critical magnetic filed is of paramagnetic origin. The growth of the coupling strength also leads to the disappearance of the low temperature region of instability towards type I phase transition and Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) phase, characteristic of BCS weak coupling limit. Disordering leads to the rapid drop of Hcp(T) in BCS weak coupling limit, while in BCS–BEC crossover region and BEC limit Hcp(T → 0) dependence on disorder is rather weak. Within DMFT+Σ approach, disorder influence on Hcp(T) is of universal nature at any coupling strength and is related only to disorder widening of the conduction band. In particular, this leads to the drop of the effective coupling strength with disorder, so that disordering restores the region of type I transition in the intermediate coupling region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. P. Nozieres and S. Schmitt-Rink, J. Low Temp. Phys. 59, 195 (1985).

    Article  ADS  Google Scholar 

  2. Th. Pruschke, M. Jarrell, and J. K. Freericks, Adv. Phys. 44, 187 (1995).

    Article  ADS  Google Scholar 

  3. A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).

    Article  ADS  Google Scholar 

  4. D. Vollhardt, AIP Conf. Proc. 1297, 339 (2010); arXiV: 1004.5069.

  5. E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, JETP Lett. 82, 198 (2005); arXiv: cond-mat/0506215.

    Article  ADS  Google Scholar 

  6. M. V. Sadovskii, I. A. Nekrasov, E. Z. Kuchinskii, Th. Prushke, and V. I. Anisimov, Phys. Rev. B 72, 155105 (2005); arXiV: cond-mat/0508585.

  7. E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, Low Temp. Phys. 32, 398 (2006); arXiv: cond-mat/0510376.

    Article  ADS  Google Scholar 

  8. E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, Phys. Rev. B 75, 115102 (2007); arXiv: cond-mat/0609404.

    Article  ADS  Google Scholar 

  9. E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, Phys. Usp. 53, 325 (2012); arXiv:1109.2305.

  10. E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, J. Exp. Theor. Phys. 106, 581 (2008); arXiv: 0706.2618.

    Article  ADS  Google Scholar 

  11. E. Z. Kuchinskii and M. V. Sadovskii, J. Exp. Theor. Phys. 122, 509 (2016); arXiv:1507.07654

  12. N. A. Kuleeva, E. Z. Kuchinskii, and M. V. Sadovskii, J. Exp. Theor. Phys. 119, 264 (2014); arXiv: 1401.2295.

    Article  Google Scholar 

  13. E. Z. Kuchinskii, N. A. Kuleeva, and M. V. Sadovskii, JETP Lett. 100, 192 (2014); arXiv: 1406.5603.

    Article  Google Scholar 

  14. E. Z. Kuchinskii, N. A. Kuleeva, and M. V. Sadovskii, J. Exp. Theor. Phys. 120, 1055 (2015); arXiv:1411.1547.

    Article  ADS  Google Scholar 

  15. E. Z. Kuchinskii, N. A. Kuleeva, and M. V. Sadovskii, J. Exp. Theor. Phys. 125, 1127 (2017); arXiv:1709.03895

  16. P. Fulde and R. A. Ferrell, Phys. Rev. A 135, 550 (1964).

    Article  ADS  Google Scholar 

  17. A. I. Larkin and Yu. N. Ovchinnikov, Sov. Phys. JETP 20, 762 (1964).

    Google Scholar 

  18. D. Saint-James, G. Sarma, and E. J. Thomas, Type II Superconductivity (Pergamon, Oxford, 1969).

    Google Scholar 

  19. R. Bulla, T. A. Costi, and T. Pruschke, Rev. Mod. Phys. 60, 395 (2008).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed under the State Contract no. 0389-2014-0001 with partial support of RFBR Grant no. 17-02-00015 and the Program of Fundamental Research of the RAS Presidium no. 12 “Fundamental problems of high-temperature superconductivity.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. Z. Kuchinskii or M. V. Sadovskii.

Additional information

The article is published in the original.

APPENDIX

APPENDIX

EQUATION FOR PARAMAGNETIC CRITICAL MAGNETIC FIELD

In general case the Noziers–Schmitt-Rink approach [1] assumes, that corrections from strong pairing interaction significantly change the chemical potential of the system, but possible vertex corrections from this interaction in Cooper channel are irrelevant, so that to analyze Cooper instability we can use the weak coupling approximation (ladder approximation). In this approximation the condition of Cooper instability in disordered attractive Hubbard model is written as:

$$1 = U{{\chi }_{0}}(q = 0,{{\omega }_{m}} = 0),$$
((7))

where

$${{\chi }_{0}}(q = 0,{{\omega }_{m}} = 0) = T\sum\limits_n^{} {\sum\limits_{{\mathbf{pp}}'}^{} {{{\Phi }_{{{\mathbf{pp}}'}}}({{\varepsilon }_{n}})} } $$
((8))

is two-particle loop in Cooper channel “dressed” only by impurity scattering, while Φpp'n) is the averaged over impurities two-particle Green’s function in Cooper channel at Matsubara frequencies εn = πT(2n + 1).

To obtain \(\sum\nolimits_{{\mathbf{pp}}'}^{} {{{\Phi }_{{{\mathbf{pp}}'}}}} \)n) we use an exact Ward identity, derived by us in [8]:

$$\begin{gathered} {{G}_{ \uparrow }}({{\varepsilon }_{n}},{\mathbf{p}}) - {{G}_{ \downarrow }}( - {{\varepsilon }_{n}}, - {\mathbf{p}}) \\ = - \sum\limits_{\mathbf{p}}^{} {{{\Phi }_{{{\mathbf{pp}}'}}}({{\varepsilon }_{n}})(G_{{0 \uparrow }}^{{ - 1}}({{\varepsilon }_{n}},{\mathbf{p}}{\text{'}}) - G_{{0 \downarrow }}^{{ - 1}}( - {{\varepsilon }_{n}}, - {\mathbf{p}})).} \\ \end{gathered} $$
((9))

Here G0↑,↓n, p) = (iεn + μ – ε(p) ± μBH)–1 is the “bare” Green’s function and G↑,↓n, p) is averaged over impurities (but not “dressed” by Hubbard interaction!) single-particle Green’s function. Using the symmetry ε(p) = ε(–p) we obtain from Ward identity (9):

$$\sum\limits_{{\mathbf{pp}}'}^{} {{{\Phi }_{{{\mathbf{pp}}'}}}({{\varepsilon }_{n}}) = - \frac{{\sum\limits_{\mathbf{p}}^{} {{{G}_{ \uparrow }}({{\varepsilon }_{n}},{\mathbf{p}}) - \sum\limits_{\mathbf{p}}^{} {{{G}_{ \downarrow }}( - {{\varepsilon }_{n}},{\mathbf{p}})} } }}{{2i{{\varepsilon }_{n}} + 2{{\mu }_{{\text{B}}}}H}},} $$
((10))

so that for Cooper susceptibility (8) we get:

$$\begin{gathered} {{\chi }_{0}}(q = 0,{{\omega }_{m}} = 0) \\ = - \frac{T}{2}\sum\limits_n^{} {\frac{{\sum\limits_{\mathbf{p}}^{} {{{G}_{ \uparrow }}({{\varepsilon }_{n}},{\mathbf{p}}) - \sum\limits_{\mathbf{p}}^{} {{{G}_{ \downarrow }}( - {{\varepsilon }_{n}},{\mathbf{p}})} } }}{{i{{\varepsilon }_{n}} + {{\mu }_{{\text{B}}}}H}}} \\ = - \frac{T}{2}\sum\limits_n^{} {\left( {\frac{{\sum\limits_{\mathbf{p}}^{} {{{G}_{ \uparrow }}({{\varepsilon }_{n}},{\mathbf{p}})} }}{{i{{\varepsilon }_{n}} + {{\mu }_{{\text{B}}}}H}} + \frac{{\sum\limits_{\mathbf{p}}^{} {{{G}_{ \downarrow }}({{\varepsilon }_{n}},{\mathbf{p}})} }}{{i{{\varepsilon }_{n}} - {{\mu }_{{\text{B}}}}H}}} \right)} . \\ \end{gathered} $$
((11))

Performing the standard summation over Fermion Matsubara frequencies, we obtain:

$$\begin{gathered} {{\chi }_{0}} = - \frac{1}{{8\pi i}}\int\limits_{ - \infty }^\infty {d\varepsilon \left( {\frac{{\sum\limits_{\mathbf{p}}^{} {G_{ \uparrow }^{R}(\varepsilon ,{\mathbf{p}}) - \sum\limits_{\mathbf{p}}^{} {G_{ \downarrow }^{A}(\varepsilon ,{\mathbf{p}})} } }}{{\varepsilon + {{\mu }_{{\text{B}}}}H}}} \right.} \\ \left. { + \frac{{\sum\limits_{\mathbf{p}}^{} {G_{ \downarrow }^{R}(\varepsilon ,{\mathbf{p}}) - \sum\limits_{\mathbf{p}}^{} {G_{ \downarrow }^{A}(\varepsilon ,{\mathbf{p}})} } }}{{\varepsilon - {{\mu }_{{\text{B}}}}H}}} \right)\tanh \frac{\varepsilon }{{2T}} \\ = \frac{1}{2}\int\limits_{ - \infty }^\infty {d\varepsilon \left( {\frac{{{{{\tilde {N}}}_{{0 \uparrow }}}(\varepsilon )}}{{\varepsilon + {{\mu }_{{\text{B}}}}H}} + \frac{{{{{\tilde {N}}}_{{0 \downarrow }}}(\varepsilon )}}{{\varepsilon - {{\mu }_{{\text{B}}}}H}}} \right)\tanh \frac{\varepsilon }{{2T}}} , \\ \end{gathered} $$
((12))

where \({{\tilde {N}}_{{0 \uparrow , \downarrow }}}\)(ε) is the “bare” (U = 0) density of states for different spin projections, “dressed” by impurity scattering. Spin splitting can be considered as an addition to chemical potential, so that introducing the “bare” density of states “dressed” by disorder in the absence of external magnetic field \({{\tilde {N}}_{0}}\)(ε), we obtain the final result for Cooper susceptibility:

$${{\chi }_{0}}\, = \,\frac{1}{4}\int\limits_{ - \infty }^\infty {d\varepsilon \frac{{{{{\tilde {N}}}_{0}}(\varepsilon )}}{\varepsilon }\left( {{\text{tanh}}\frac{{\varepsilon + {{\mu }_{{\text{B}}}}H}}{{2T}}\, + \,\tanh \frac{{\varepsilon - {{\mu }_{{\text{B}}}}H}}{{2T}}} \right)} \,.$$
((13))

In Eq. (13) energy ε is counted from the chemical potential level. If we count it from the middle of the conduction band we have to replace ε → ε – μ and the condition of Cooper instability (7) leads to the equation defining critical temperature depending on the external magnetic field, which gives the equation for paramagnetic critical magnetic filed (6). The chemical potential for different values of U and Δ should be determined from DMFT+Σ calculations, i.e. from the standard equation for electron number (band filling), which allows us to find Hcp for the wide range of model parameters, including the region of BCS–BEC crossover and the limit of strong coupling at different levels of disorder. This reflects the physical meaning of Nozieres–Scmitt-Rink approximation—in the weak coupling region the temperature of superconducting transition is controlled by the equation for Cooper instability (6), while in the strong coupling limit it is defined as the temperature of BEC, which is controlled by chemical potential. The joint solution of Eq. (6) and the equation for the chemical potential guarantees the correct interpolation for Hcp in the region of BCS–BEC crossover.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuchinskii, E.Z., Kuleeva, N.A. & Sadovskii, M.V. Temperature Dependence of Paramagnetic Critical Magnetic Field in Disordered Attractive Hubbard Model. J. Exp. Theor. Phys. 127, 753–760 (2018). https://doi.org/10.1134/S1063776118100047

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776118100047

Keywords

Navigation