Advertisement

Journal of Experimental and Theoretical Physics

, Volume 127, Issue 2, pp 179–188 | Cite as

Effect of Oxygen on the Quantum, Magnetic, and Thermodynamic Properties of Co Nanowires on the Reconstructed Anisotropic (1 × 2)/Au(110) and (1 × 2)/Pt(110) Surfaces: Ab Initio Approach

  • Ya. S. Koshelev
  • D. I. Bazhanov
Atoms, Molecules, Optics

Abstract

Ab initio theoretical study of the quantum magnetic properties of Co nanowires on the pure and oxygen-reconstructed (1 × 2)/Au(110) and (1 × 2)/Pt(110) surfaces is performed. Their structures and electronic configurations are calculated using the electron density functional theory. High values of magnetic moment and magnetic anisotropy energies of Co atoms are found on both pure and oxygen-reconstructed (1 × 2)/Au(110) and (1 × 2)/Pt(110) surfaces. The adsorption of oxygen atoms on the (1 × 2)/Au(110) substrate is shown to affect the structural arrangement of Co nanowire atoms on this substrate and to increase the magnetic anisotropy energy (by 1.91 meV per nanowire atom). The adsorption of oxygen on the Pt(110) substrate substantially decreases the magnetic anisotropy energy of the Co nanowire on it (by 5.98 meV per atom). The origin of these changes is revealed by analyzing the local densities of states of the d electrons of nanowire atoms. The temperature ranges of the states with the lowest free surface energy are determined using the atomistic thermodynamics methods. These data and the available experimental data are used to predict the possibility of observing the structures under study in experiments.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Gava, A. dal Corso, A. Smogunov, and E. Tosatti, Eur. Phys. J. B 75, 57 (2010).ADSCrossRefGoogle Scholar
  2. 2.
    P. Gambardella, A. Dallmeyer, K. Maiti, M. C. Malagoli, W. Eberhardt, K. Kern, and C. Carbone, Nature (Lodnon, U.K.) 416, 301 (2002).ADSCrossRefGoogle Scholar
  3. 3.
    N. N. Negulyaev, J. Dorantes-Dávila, L. Niebergall, L. Juárez-Reyes, G. M. Pastor, and V. S. Stepanyuk, Phys. Rev. B 87, 054425 (2013).ADSCrossRefGoogle Scholar
  4. 4.
    A. Sommerfeld and H. Bethe, Aufbau der Zusammenhangenden Materie, Vol. 24/2 of Handbuch der Physik (Springer, Berlin, Heidelberg, 1933), p.333.CrossRefGoogle Scholar
  5. 5.
    Y. Mokrousov, G. Bihlmayer, S. Blügel, and S. Heinze, Phys. Rev. B 75, 104413 (2007).ADSCrossRefGoogle Scholar
  6. 6.
    A. Delin and E. Tosatti, J. Phys.: Condens. Matter 16, 8061 (2004).ADSGoogle Scholar
  7. 7.
    J. C. Tung and G. Y. Guo, Phys. Rev. B 68, 144434 (2003).CrossRefGoogle Scholar
  8. 8.
    C. Klein, R. Koller, E. Lundgren, F. Máca, J. Redinger, M. Schmid, and P. Varga, Phys. Rev. B 70, 153403 (2004).ADSCrossRefGoogle Scholar
  9. 9.
    L. Yan, M. Przybylski, Yafeng Lu, W. H. Wang, J. Barthel, and J. Kirschner, Appl. Phys. Lett. 86, 102503 (2005).ADSCrossRefGoogle Scholar
  10. 10.
    Wei Fan and Xin-Gao Gong, arXiv:condmat/0407748.Google Scholar
  11. 11.
    D. Spišák and J. Hafner, Comput. Mater. Sci. 27, 138 (2003).CrossRefGoogle Scholar
  12. 12.
    S. Shirakia, H. Fujisawaa, M. Nantoha, and M. Kawai, Appl. Surf. Sci. 237, 284 (2004).ADSCrossRefGoogle Scholar
  13. 13.
    R. Cheng, K. Yu. Guslienko, F. Y. Fradin, J. E. Pearson, H. F. Ding, Dongqi Li, and S. D. Bader, Phys. Rev. B 72, 014409 (2005).ADSCrossRefGoogle Scholar
  14. 14.
    J. Honolka, T. Y. Lee, K. Kuhnke, D. Repetto, V. Sessi, P. Wahl, A. Buchsbaum, P. Varga, S. Gardonio, C. Carbone, S. R. Krishnakumar, P. Gambardella, M. Komelj, R. Singer, M. Fähnle, K. Fauth, G. Schültz, A. Enders, and K. Kern, Phys. Rev. B 79, 104430 (2009).ADSCrossRefGoogle Scholar
  15. 15.
    A. B. Shicka, F. Máca, and P. M. Oppeneer, J. Magn. Magn. Mater. 290–291, 257 (2005).CrossRefGoogle Scholar
  16. 16.
    P. Jacobson, M. Muenks, G. Laskin, O. Brovko, V. Stepanyuk, M. Ternes, and K. Kern, Sci. Adv. 3, e1602060 (2017).ADSCrossRefGoogle Scholar
  17. 17.
    Xiao-Dong Ma, T. Nakagawa, and T. Yokoyama, Surf. Sci. 600, 4605 (2006).ADSCrossRefGoogle Scholar
  18. 18.
    Yu. G. Korobova, D. I. Bazhanov, I. A. Kamynina, K. K. Abgaryan, and A. S. Ilyushin, Phys. Solid State 57, 1366 (2015).ADSCrossRefGoogle Scholar
  19. 19.
    R. Koch, M. Sturmat, and J. J. Schulz, Surf. Sci. 454–456, 543 (2000).CrossRefGoogle Scholar
  20. 20.
    J. M. Gottfried, K. J. Schmidt, S. L. M. Schroeder, and K. Christmann, Surf. Sci. 511, 65 (2002).ADSCrossRefGoogle Scholar
  21. 21.
    W. X. Li, L. Österlund, E. K. Vestergaard, R. T. Vang, J. Matthiesen, T. M. Pedersen, E. Laegsgaard, B. Hammer, and F. Besenbacher, Phys. Rev. Lett. 93, 146104 (2004).ADSCrossRefGoogle Scholar
  22. 22.
    O. P. Polyakov, J. G. Korobova, O. V. Stepanyuk, and D. I. Bazhanov, J. Appl. Phys. 121, 014306 (2017).ADSCrossRefGoogle Scholar
  23. 23.
    J. Rogal, Doctoral Thesis in Physics (Freie Univ., Berlin, 2006).Google Scholar
  24. 24.
    K. Reuter and M. Scheffler, Phys. Rev. B 65, 035406 (2001).ADSCrossRefGoogle Scholar
  25. 25.
    G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).ADSCrossRefGoogle Scholar
  26. 26.
    P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).ADSCrossRefGoogle Scholar
  27. 27.
    H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Phys. Rev. B 57, 1505 (1998).ADSCrossRefGoogle Scholar
  29. 29.
    L. Wang, Th. Maxisch, and G. Ceder, Phys. Rev. B 73, 195107 (2006).ADSCrossRefGoogle Scholar
  30. 30.
    G. Barcaro, I. Owain Thomas, and A. Fortunelli, J. Chem. Phys. 132, 124703 (2010).ADSCrossRefGoogle Scholar
  31. 31.
    J. Fester, M. García-Melchor, A. S. Walton, M. Bajdich, Z. Li, L. Lammich, A. Vojvodic, and J. V. Lauritsen, Nat. Commun. 8, 14169 (2017).ADSCrossRefGoogle Scholar
  32. 32.
    Hongqing Shi and C. Stampfl, Phys. Rev. B 77, 094127 (2008).ADSCrossRefGoogle Scholar
  33. 33.
    Th. M. Pedersen, Wei Xue Li, and B. Hammer, Phys. Chem. Chem. Phys. 8, 1566 (2006).CrossRefGoogle Scholar
  34. 34.
    Tianwei Zhu, Shi-Gang Sun, R. A. van Santen, and E. J. M. Hensen, J. Phys. Chem. C 117, 11251 (2013).CrossRefGoogle Scholar
  35. 35.
    T. Franz, J. Zabloudil, F. Mittendorfer, L. Gragnaniello, G. Parteder, F. Allegretti, S. Surnev, and F. P. Netzer, J. Phys. Chem. Lett. 3, 186 (2012).CrossRefGoogle Scholar
  36. 36.
    CRC Handbook of Chemistry and Physics (CRC, Boca Raton, FL, 1995).Google Scholar
  37. 37.
    D. M. Eigler and E. K. Schweizer, Nature (London, U.K.) 344, 524 (1990).ADSCrossRefGoogle Scholar
  38. 38.
    Ding-Sheng Wang, Ruqian Wu, and A. J. Freeman, Phys. Rev. B 47, 14932 (1993).ADSCrossRefGoogle Scholar
  39. 39.
    P. Bruno, Phys. Rev. B 39, 865 (1989).ADSCrossRefGoogle Scholar
  40. 40.
    C. Andersson, B. Sanyal, O. Eriksson, L. Nordströ, O. Karis, and D. Arvanitis, Phys. Rev. Lett. 99, 177207 (2007).ADSCrossRefGoogle Scholar
  41. 41.
    M. Komelj, D. Steiauf, and M. Fähnle, Phys. Rev. B 73, 134428 (2006).ADSCrossRefGoogle Scholar
  42. 42.
    M. AInot and J. Fusy, Appl. Surf. Sci. 55, 209 (1992).ADSCrossRefGoogle Scholar
  43. 43.
    Vl. V. Voevodin, S. A. Zhumatii, S. I. Sobolev, A. S. Antonov, P. A. Bryzgalov, D. A. Nikitenko, K. S. Stefanov, and Vad. V. Voevodin, Otkryt. Sist., No. 7, 36 (2012).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Skolkovo Institute of Science and TechnologyInnovative Center SkolkovoMoscowRussia
  3. 3.Dorodnicyn Computing CentreRussian Academy of SciencesMoscowRussia
  4. 4.Moscow Aviation InstituteMoscowRussia

Personalised recommendations