Advertisement

General form of DMPK Equation

  • I. M. Suslov
Order, Disorder, And Phase Transition In Condensed System

Abstract

The Dorokhov–Mello–Pereyra–Kumar (DMPK) equation, using in the analysis of quasi-onedimensional systems and describing evolution of diagonal elements of the many-channel transfer-matrix, is derived under minimal assumptions on the properties of channels. The general equation is of the diffusion type with a tensor character of the diffusion coefficient and finite values of non-diagonal components. We suggest three different forms of the diagonal approximation, one of which reproduces the usual DMPK equation and its generalization suggested by Muttalib and co-workers. Two other variants lead to equations of the same structure, but with different definitions of their parameters. They contain additional terms, which are absent in the first variant. The coefficients of additional terms are shown to be finite beyond the metallic phase by calculation of the Lyapunov exponents and their comparison with numerical experiments. Consequences of the obtained equations for the problem of the conductance distribution and the status of the nonlinear sigma-models are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. N. Dorokhov, JETP Lett. 36, 318 (1982).ADSGoogle Scholar
  2. 2.
    P. A. Mello, P. Pereyra, and N. Kumar, Ann. Phys. (N.Y) 181, 290 (1988).ADSCrossRefGoogle Scholar
  3. 3.
    P. A. Mello and A. D. Stone, Phys. Rev. 44, 3559 (1991).ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    A. M. S. Macêdo and J. T. Chalker, Phys. Rev. 46, 14985 (1992).CrossRefGoogle Scholar
  5. 5.
    C. W. J. Beenakker, Rev. Mod. Phys. 69, 731 (1997).ADSCrossRefGoogle Scholar
  6. 6.
    M. L. Mehta, Random Matrices (Academic, New York, 1991).zbMATHGoogle Scholar
  7. 7.
    P. W. Brower and K. Frahm, Phys. Rev. 53, 1490 (1996).ADSCrossRefGoogle Scholar
  8. 8.
    K. B. Efetov, Adv. Phys. 32, 53 (1983).ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    S. Iida, H. A. Weidenmüller, and M. R. Zirnbauer, Ann. Phys. (N.Y) 200, 219 (1990).ADSCrossRefGoogle Scholar
  10. 10.
    B. L. Al’tshuler, JETP Lett. 41, 648 (1985).ADSGoogle Scholar
  11. 11.
    P. A. Lee and A. D. Stone, Phys. Rev. Lett. 55, 1622 (1985).ADSCrossRefGoogle Scholar
  12. 12.
    J. L. Pichard and G. Sarma, J. Phys. C 14, L127 (1981)ADSCrossRefGoogle Scholar
  13. 12a.
    A. MacKinnon and B. Kramer, Phys. Rev. Lett. 47, 1546 (1981).ADSCrossRefGoogle Scholar
  14. 13.
    J. T. Chalker and M. Bernhardt, Phys. Rev. Lett. 70, 982 (1993).ADSCrossRefGoogle Scholar
  15. 14.
    I. M. Suslov, J. Exp. Theor. Phys. 124, 763 (2017).ADSCrossRefGoogle Scholar
  16. 15.
    K. A. Muttalib and J. R. Klauder, Phys. Rev. Lett. 82, 4272 (1999).ADSCrossRefGoogle Scholar
  17. 16.
    K. A. Muttalib and V. A. Gopar, Phys. Rev. 66, 11538 (2002).CrossRefGoogle Scholar
  18. 17.
    A. Douglas, P. Markoš, and K. A. Muttalib, J. Phys. A 47, 125103 (2014).ADSMathSciNetCrossRefGoogle Scholar
  19. 18.
    P. Markoš, Acta Phys. Slov. 56, 561 (2006).ADSGoogle Scholar
  20. 19.
    P. A. Mello and J. L. Pichard, J. Phys. I 1, 493 (1991).Google Scholar
  21. 20.
    E. N. Economou and C. M. Soukoulis, Phys. Rev. Lett. 46, 618 (1981).ADSCrossRefGoogle Scholar
  22. 21.
    D. S. Fisher and P. A. Lee, Phys. Rev. 23, 6851 (1981).ADSMathSciNetCrossRefGoogle Scholar
  23. 22.
    C. W. J. Beenakker and B. Rejaei, Phys. Rev. Lett. 71, 3689 (1993).ADSCrossRefGoogle Scholar
  24. 23.
    R. Landauer, IBM J. Res. Dev. 1, 223 (1957); Philos. Mag. 21, 863 (1970).MathSciNetCrossRefGoogle Scholar
  25. 24.
    V. I. Mel’nikov, Sov. Phys. Solid Stat. 23, 444 (1981).Google Scholar
  26. 25.
    A. A. Abrikosov, Solid State Commun. 37, 997 (1981).ADSCrossRefGoogle Scholar
  27. 26.
    N. Kumar, Phys. Rev. 31, 5513 (1985).ADSCrossRefGoogle Scholar
  28. 27.
    B. Shapiro, Phys. Rev. 34, 4394 (1986).ADSCrossRefGoogle Scholar
  29. 28.
    P. Mello, Phys. Rev. 35, 1082 (1987).ADSCrossRefGoogle Scholar
  30. 29.
    B. Shapiro, Philos. Mag. 56, 1031 (1987).ADSCrossRefGoogle Scholar
  31. 30.
    K. A. Muttalib, P. Markoš, and P. Wölfle, Phys. Rev. 72, 125317 (2005).CrossRefGoogle Scholar
  32. 31.
    K. G. Wilson and J. Kogut, The Renormalisation Group and E-Expansion (Mir, Moscow, 1975); Phys. Rep. 12, 75 (1974).Google Scholar
  33. 32.
    Sh. Ma, Modern Theory of Critical Phenomena (Mir, Moscow, 1980; Benjamin, Reading, MA, 1976).Google Scholar
  34. 33.
    I. M. Suslov, J. Exp. Theor. Phys. 115, 897 (2012).ADSCrossRefGoogle Scholar
  35. 34.
    A. D. Stone and A. Szafer, IBM J. Res. Dev. 32, 384 (1988).CrossRefGoogle Scholar
  36. 35.
    P. W. Anderson, D. J. Thouless, E. Abrahams, and D. S. Fisher, Phys. Rev. 22, 3519 (1980).ADSMathSciNetCrossRefGoogle Scholar
  37. 36.
    D. C. Langreth and E. Abrahams, Phys. Rev. 24, 2978 (1981).ADSCrossRefGoogle Scholar
  38. 37.
    M. Ya. Azbel, J. Phys. C 14, L225 (1981).CrossRefGoogle Scholar
  39. 38.
    M. Buttiker, Y. Imry, R. Landauer, and S. Pinhas, Phys. Rev. 31, 6207 (1985).ADSCrossRefGoogle Scholar
  40. 39.
    M. Buttiker, Phys. Rev. Lett. 57, 1761 (1986).ADSCrossRefGoogle Scholar
  41. 40.
    B. I. Shklovskii, B. Shapiro, B. R. Sears, et al., Phys. Rev. 47, 11487 (1993).CrossRefGoogle Scholar
  42. 41.
    V. I. Oseledets, Tr. Mosk. Mat. Ob-v. 19, 197 (1968).Google Scholar
  43. 42.
    I. M. Suslov, J. Exp. Theor. Phys. 101, 661 (2005).ADSCrossRefGoogle Scholar
  44. 43.
    I. M. Suslov, J. Exp. Theor. Phys. 114, 107 (2012).ADSCrossRefGoogle Scholar
  45. 44.
    J. L. Pichard and G. Andre, Europhys. Lett. 2, 477 (1986).ADSCrossRefGoogle Scholar
  46. 45.
    P. Markoš, J. Phys.: Condens. Matter 7, 8361 (1995).ADSGoogle Scholar
  47. 46.
    K. Efetov, Supersymmetry in Disorder and Haos (Cambridge Univ. Press, Cambridge, 1995).zbMATHGoogle Scholar
  48. 47.
    E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishman, Phys. Rev. Lett. 42, 673 (1979).ADSCrossRefGoogle Scholar
  49. 48.
    K. B. Efetov, Sov. Phys. JET. 56, 467 (1982).Google Scholar
  50. 49.
    V. E. Kravtsov, I. V. Lerner, and V. I. Yudson, Sov. Phys. JET. 67, 1441 (1988).Google Scholar
  51. 50.
    F. Wegner, Z. Phys. B 35, 207 (1979)ADSCrossRefGoogle Scholar
  52. 50a.
    L. Schäfer and F. Wegner, Z. Phys. B 38, 113 (1980)ADSMathSciNetCrossRefGoogle Scholar
  53. 50b.
    S. Hikami, Phys. Rev. 24, 2671 (1981).ADSCrossRefGoogle Scholar
  54. 51.
    K. B. Efetov, A. I. Larkin, and D. E. Khmel’nitskii, Sov. Phys. JET. 52, 568 (1980).ADSGoogle Scholar
  55. 52.
    K. B. Efetov, Sov. Phys. JET. 61, 606 (1985).Google Scholar
  56. 53.
    B. Mühlschlegel, D. J. Scalapino, and R. Denton, Phys. Rev. 6, 1767 (1972)CrossRefGoogle Scholar
  57. 53a.
    G. Deutscher, Y. Imry, and L. Gunter, Phys. Rev. 10, 4598 (1974).ADSCrossRefGoogle Scholar
  58. 54.
    K. B. Efetov, Sov. Phys. JET. 65, 360 (1987); Sov. Phys. JETP 66, 634 (1987)MathSciNetGoogle Scholar
  59. 54a.
    M. R. Zirnbauer, Phys. Rev. 34, 6394 (1986); Nucl. Phys. B 265, 375 (1986).ADSMathSciNetCrossRefGoogle Scholar
  60. 55.
    I. M. Suslov, J. Exp. Theor. Phys. 119, 1115 (2014).ADSCrossRefGoogle Scholar
  61. 56.
    N. N. Bogolyubov and D. V. Shirkov, Introduction to the Theory of Quantized Fields (Nauka, Moscow, 1984; Wiley, New York, 1980)zbMATHGoogle Scholar
  62. 56a.
    E. Brezin, J. C. Le Guillou, and J. Zinn-Justin, in Phase Transitions and Critical Phenomena, Ed. by C. Domb and M. S. Green (Academic, New York, 1976), Vol. 6.Google Scholar
  63. 57.
    A. Nitzan, K. F. Freed, and M. N. Cohen, Phys. Rev. 15, 4476 (1977)ADSCrossRefGoogle Scholar
  64. 57a.
    M. V. Sadovskii, Sov. Phys. Usp. 24, 96 (1981).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Kapitza Institute for Physical ProblemsMoscowRussia

Personalised recommendations