Advertisement

Electrons in Quasi-1D Waveguides with the Spin–Orbit Interaction: Manifestations of Additional Spin Symmetry

  • A. S. Kozulin
  • A. I. Malyshev
  • N. E. Kurbakova
Electronic Properties of Solid
  • 24 Downloads

Abstract

We consider quasi-one-dimensional electron waveguides with spin–orbit interaction, which are formed in quantum wells grown along arbitrary crystallographic directions. An analytic solution to the Schrödinger equation is obtained for systems with Hamiltonians possessing additional spin symmetry. It is shown that the dispersion curves for electrons, which correspond to different size-quantization modes, can intersect only when such symmetry exists. We analyze the structure of dips appearing on the dependences of the conductance of an inhomogeneous waveguide on the energy of carriers. It is shown that the width of the dips substantially depends on the waveguide orientation in the plane of the quantum well. In particular, it vanishes when the waveguide is formed along the direction of the “magic” vector of the initial 2D system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Xu, D. D. Awschalom, and J. Nitta, Handbook of Spintronics (Springer, New York, 2016).CrossRefGoogle Scholar
  2. 2.
    I. Zutic, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 74, 323 (2004).ADSCrossRefGoogle Scholar
  3. 3.
    S. Sugahara and J. Nitta, Proc. IEE. 98, 2124 (2010).CrossRefGoogle Scholar
  4. 4.
    S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990).ADSCrossRefGoogle Scholar
  5. 5.
    S. D. Ganichev and L. E. Golub, Phys. Stat. Solidi. 251, 1801 (2014).ADSCrossRefGoogle Scholar
  6. 6.
    A. S. Kozulin, A. I. Malyshev, and A. A. Konakov, J. Phys.: Conf. Ser. 816, 012023 (2017).Google Scholar
  7. 7.
    J. Schliemann, Rev. Mod. Phys. 89, 011001 (2017).ADSCrossRefGoogle Scholar
  8. 8.
    E. I. Rashba, Sov. Phys. Solid St. 2, 1109 (1960).Google Scholar
  9. 9.
    Yu. A. Bychkov and E. I. Rashba, JETP Lett. 39, 78 (1984).ADSGoogle Scholar
  10. 10.
    A. Manchon, H. C. Koo, J. Nitta, et al., Nat. Mater. 14, 871 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    M. C. Luffe, J. Kailasvuori, and T. S. Nunner, Phys. Rev. 84, 075326 (2011).CrossRefGoogle Scholar
  12. 12.
    M. Kohda, V. Lechner, Y. Kunihashi, et al., Phys. Rev. 86, 081306(R) (2012).ADSCrossRefGoogle Scholar
  13. 13.
    B. A. Bernevig, J. Orenstein, and S.-C. Zhang, Phys. Rev. Lett. 97, 236601 (2006).ADSCrossRefGoogle Scholar
  14. 14.
    M. Kammermeier, P. Wenk, and J. Schliemann, Phys. Rev. Lett. 117, 236801 (2016).ADSCrossRefGoogle Scholar
  15. 15.
    B. H. Wu and J. C. Cao, Phys. Rev. 73, 245412 (2006).CrossRefGoogle Scholar
  16. 16.
    F. Mireles and G. Kirczenow, Phys. Rev. 64, 024426 (2001).ADSCrossRefGoogle Scholar
  17. 17.
    L. Zhang, P. Brusheim, and H. Q. Xu, Phys. Rev. 72, 045347 (2005).ADSCrossRefGoogle Scholar
  18. 18.
    A. I. Malyshev and A. S. Kozulin, J. Exp. Theor. Phys. 121, 96 (2015).ADSCrossRefGoogle Scholar
  19. 19.
    X. F. Wang and P. Vasilopoulos, Appl. Phys. Lett. 83, 940 (2003).ADSCrossRefGoogle Scholar
  20. 20.
    X. F. Wang, Phys. Rev. 69, 035302 (2004).ADSCrossRefGoogle Scholar
  21. 21.
    P. Altmann, M. P. Walser, C. Reichl, et al., Phys. Rev. 90, 201306(R) (2014).ADSCrossRefGoogle Scholar
  22. 22.
    A. Sasaki, S. Nonaka, Y. Kunihashi, et al., Nat. Nanotechnol. 9, 703 (2014).ADSCrossRefGoogle Scholar
  23. 23.
    Y. Kunihashi, M. Kohda, and J. Nitta, Phys. Rev. Lett. 102, 226601 (2009).ADSCrossRefGoogle Scholar
  24. 24.
    P. Altmann, M. Kohda, C. Reichl, et al., Phys. Rev. 92, 235304 (2015).CrossRefGoogle Scholar
  25. 25.
    A. E. Miroshnichenko, S. Flach, and Y. Kivshar, Rev. Mod. Phys. 82, 2257 (2010).ADSCrossRefGoogle Scholar
  26. 26.
    Y. S. Joe, A. M. Satanin, and C. S. Kim, Phys. Scr. 74, 259 (2006).ADSCrossRefGoogle Scholar
  27. 27.
    C. Gradl, M. Kempf, D. Schuh, et al., Phys. Rev. 90, 165439 (2014).CrossRefGoogle Scholar
  28. 28.
    C. Gradl, R. Winkler, and M. Kempf, arXiv:condmat/ 1709.08376.Google Scholar
  29. 29.
    J. Schliemann, J. C. Egues, and D. Loss, Phys. Rev. Lett. 90, 146801 (2003).ADSCrossRefGoogle Scholar
  30. 30.
    P. M. Krstajic, E. Rezasoltani, and P. Vasilopoulos, Phys. Rev. 81, 155325 (2010).CrossRefGoogle Scholar
  31. 31.
    H. Xu and W. Sheng, Phys. Rev. 57, 11903 (1998).CrossRefGoogle Scholar
  32. 32.
    I. A. Shelykh and N. G. Galkin, Phys. Rev. 70, 205328 (2004).ADSCrossRefGoogle Scholar
  33. 33.
    Ch. S. Kim, A. M. Satanin, Yu. S. Dzho, and R. M. Kosbi, J. Exp. Theor. Phys. 89, 144 (1999).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. S. Kozulin
    • 1
  • A. I. Malyshev
    • 1
  • N. E. Kurbakova
    • 1
  1. 1.Lobachevskii State University of Nizhny NovgorodNizhny NovgorodRussia

Personalised recommendations