Skip to main content
Log in

SU(3) Polyakov Linear-Sigma Model: Magnetic Properties of QCD Matter in Thermal and Dense Medium

  • Nuclei, Particles, Fields, Gravitation, and Astrophysics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The linear-sigma model, in which information about confining gluons is included through the Polyakov-loop potential (PLSM), is considered in order to perform a systematic study for various magnetic properties of QCD matter under extreme conditions of high temperatures and densities and finite magnetic field strengths. The introduction of magnetic field to the PLSM Lagrangian requires suitable utilization of Landau quantization, modification in the dispersion relations, and momentum-space dimension-reduction. We observed that increasing the magnetic field leads to filling-up lower Landau levels first and decreasing the number of occupied levels. We conclude that the population of Landau levels is most sensitive to the magnetic field and to the quark charges. The influences of finite magnetic field on the temperature dependence of chiral and deconfinement order-parameter(s) are studied. We present estimations for the magnetization, the magnetic susceptibility, the permeability, and the catalytic properties of QCD matter as functions of temperature. The dependences of the resulting freeze-out parameters, temperatures, and baryon chemical potentials on the corresponding magnetic field strengths have been analyzed, as well. These calculations are compared with recent lattice QCD simulations, whenever available. We conclude that the QCD matter seems to have paramagnetic property at temperatures greater than the critical one. There is an evidence for weak diamagnetic property at low temperatures. Last but not least, we observe that the magnetic catalysis is inverse, namely, the critical temperatures decrease with increasing the magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Skokov, A. Y. Illarionov, and V. Toneev, Int. J. Mod. Phys. A 24, 5925 (2009).

    Article  ADS  Google Scholar 

  2. A. Bzdak and V. Skokov, Phys. Lett. B 710, 174 (2012)

    Article  ADS  Google Scholar 

  3. W. Deng and X. Huang, Phys. Rev. C 85, 044907 (2012).

    Article  ADS  Google Scholar 

  4. F. Bruckmann, G. Endrodi, and T. G. Kovacs, J. High Energy Phys. 1304, 112 (2013).

    Article  ADS  Google Scholar 

  5. F. Preis, A. Rebhan, and A. Schmitt, J. High Energy Phys. 1103, 033 (2011).

    Article  ADS  Google Scholar 

  6. F. Preis, A. Rebhan, and A. Schmitt, Lect. Notes Phys. 871, 51 (2013).

    Article  ADS  Google Scholar 

  7. M. D. Elia, S. Mukherjee, and F. Sanfilippo, Phys. Rev. D 82, 051501 (2010).

    Article  ADS  Google Scholar 

  8. A. Haber, F. Preis, and A. Schmitt, Phys. Rev. D 90, 125036 (2014).

    Article  ADS  Google Scholar 

  9. M. Ferreira, P. Costa, C. Providencia, O. Lourenco, and T. Frederico, Talk at Conference on Compact Stars in the QCD Phase Diagram IV (CSQCDIV), Prerow, Germany Sept. 26–30, 2014.

    Google Scholar 

  10. K. Tuchin, Phys. Rev. C 82, 034904 (2010).

    Article  ADS  Google Scholar 

  11. S. Gupta, Phys. Lett. B 597, 57 (2004).

    Article  ADS  Google Scholar 

  12. E. L. Bratkovskaya, O. V. Teryaev, and V. D. Toneev, Phys. Lett. B 348, 283 (1995).

    Article  ADS  Google Scholar 

  13. I. A. Shovkovy, Lect. Notes Phys. 871, 13 (2013).

    Article  ADS  Google Scholar 

  14. I. Selyuzhenkov et al., Prog. Theor. Phys. Suppl. 193, 153 (2012).

    Article  ADS  Google Scholar 

  15. L. Adamczyk et al., Phys. Rev. Lett. 113, 052302 (2014).

    Article  ADS  Google Scholar 

  16. B. I. Abelev et al., Phys. Rev. Lett. 103, 251601 (2009).

    Article  ADS  Google Scholar 

  17. B. I. Abelev et al., Phys. Rev. C 81, 054908 (2010).

    Article  ADS  Google Scholar 

  18. S. A. Voloshin, Indian J. Phys. 85, 1103 (2011).

    Article  ADS  Google Scholar 

  19. G. S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S. D. Katz, S. Krieg, A. Schafer, and K. K. Szabo, J. High Energy Phys. 1202, 044 (2012).

    Article  ADS  Google Scholar 

  20. L. Levkova and C. DeTar, Phys. Rev. Lett. 112, 012002 (2014).

    Article  ADS  Google Scholar 

  21. G. S. Bali, F. Bruckmann, G. Endrodi, F. Gruber, and A. Schafer, J. High Energy Phys. 1304, 130 (2013).

    Article  ADS  Google Scholar 

  22. G. S. Bali, F. Bruckmann, G. Endrodi, and A. Schafer, PoS Lattice 2013, 182 (2014).

    Google Scholar 

  23. G. Bali, F. Bruckmann, G. Endrodi, S. Katz, and A. Schafer, J. High Energy Phys. 1408, 177 (2014).

    Article  ADS  Google Scholar 

  24. G. Endrodi, J. High Energy Phys. 1304, 023 (2013).

    Article  MathSciNet  ADS  Google Scholar 

  25. A. Bhattacharyya, S. K. Ghosh, R. Ray, and S. Samanta, Europhys. Lett. 115, 62003 (2016).

    Article  ADS  Google Scholar 

  26. S. P. Klevansky, Rev. Mod. Phys. 64, 649 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  27. P. G. Allen and N. N. Scoccola, Phys. Rev. D 88, 094005 (2013).

    Article  ADS  Google Scholar 

  28. D. P. Menezes, M. B. Pinto, S. S. Avancini, A. P. Martinez, and C. Providencia, Phys. Rev. C 79, 035807 (2009).

    Article  ADS  Google Scholar 

  29. K. Fukushima, M. Ruggieri, and R. Gatto, Phys. Rev. D 81, 114031 (2010).

    Article  ADS  Google Scholar 

  30. A. J. Mizher, M. N. Chernodub, and E. S. Fraga, Phys. Rev. D 82, 105016 (2010).

    Article  ADS  Google Scholar 

  31. V. Skokov, Phys. Rev. D 85, 034026 (2012).

    Article  ADS  Google Scholar 

  32. M. Ruggieri, M. Tachibana, and V. Greco, J. High Energy Phys. 1307, 165 (2013).

    Article  ADS  Google Scholar 

  33. A. N. Tawfik and N. Magdy, Phys. Rev. C 90, 015204 (2014).

    Article  ADS  Google Scholar 

  34. G. Bali, F. Bruckmann, G. Endrodi, and A. Schaefer, Phys. Rev. Lett. 112, 042301 (2014).

    Article  ADS  Google Scholar 

  35. R. Gatto and M. Ruggieri, Lect. Notes Phys. 871, 87 (2013).

    Article  ADS  Google Scholar 

  36. D. E. Kharzeev, K. Landsteiner, A. Schmitt, and H. U. Yee, Lect. Notes Phys. 871, 1 (2013).

    Article  ADS  Google Scholar 

  37. J. O. Andersen and W. R. Naylor, Rev. Mod. Phys. 88, 025001 (2016).

    Article  ADS  Google Scholar 

  38. E. S. Fraga and A. J. Mizher, Phys. Rev. D 78, 025016 (2008).

    Article  ADS  Google Scholar 

  39. A. Tawfik, N. Magdy, and A. Diab, Phys. Rev. C 89, 055210 (2014).

    Article  ADS  Google Scholar 

  40. A. N. Tawfik, A. M. Diab, and M. T. Hussein, Int. J. Mod. Phys. A 31, 1650175 (2016).

    Article  ADS  Google Scholar 

  41. H. C. G. Caldas, A. L. Mota, and M. C. Nemes, Phys. Rev. D 63, 056011 (2001).

    Article  ADS  Google Scholar 

  42. H. C. G. Caldas, Phys. Rev. D 65, 065005 (2002).

    Article  ADS  Google Scholar 

  43. A. N. Tawfik, A. M. Diab, and M. T. Hussein, Int. J. Adv. Res. Phys. Sci. 3, 4 (2016).

    Google Scholar 

  44. A. N. Tawfik, A. M. Diab, N. Ezzelarab, and A. G. Shalaby, Adv. High Energy Phys. 2016, 1381479 (2016).

    Google Scholar 

  45. O. Scavenius, A. Mocsy, I. N. Mishustin, and D. H. Rischke, Phys. Rev. C 64, 045202 (2001).

    Article  ADS  Google Scholar 

  46. S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972).

    Google Scholar 

  47. B. J. Schaefer and M. Wagner, Phys. Rev. D 79, 014018 (2009).

    Article  ADS  Google Scholar 

  48. C. Ratti, M. A. Thaler, and W. Weise, Phys. Rev. D 73, 014019 (2005).

    Article  ADS  Google Scholar 

  49. S. Roessner, C. Ratti, and W. Weise, Phys. Rev. D 75, 034007 (2007).

    Article  ADS  Google Scholar 

  50. B.-J. Schaefer, J. M. Pawlowski, and J. Wambach, Phys. Rev. D 76, 074023 (2007).

    Article  ADS  Google Scholar 

  51. K. Fukushima, Phys. Rev. D 77, 114028 (2008).

    Article  ADS  Google Scholar 

  52. E. S. Fraga, B. W. Mintz, and J. Schaffner-Bielich, Phys. Lett. B 731, 154 (2014).

    Article  ADS  Google Scholar 

  53. J. O. Andersen, W. R. Naylor, and A. Tranberg, J. High Energy Phys. 1404, 187 (2014).

    Article  ADS  Google Scholar 

  54. J. K. Boomsma and D. Boer, Phys. Rev. D 81, 074005 (2010).

    Article  ADS  Google Scholar 

  55. K. Kamikado and T. Kanazawa, J. High Energy Phys. 1501, 129 (2015).

    Article  ADS  Google Scholar 

  56. J. R. Hook and H. E. Hall, Solid State Physics (Wiley, Chichester, 1995).

    Google Scholar 

  57. K. Kamikado and T. Kanazawa, J. High Energy Phys. 1501, 129 (2015).

    Article  ADS  Google Scholar 

  58. T. Steinert and W. Cassing, Phys. Rev. C 89, 035203 (2014).

    Article  ADS  Google Scholar 

  59. N. Agasian and S. Fedorov, Phys. Lett. B 663, 445 (2008).

    Article  ADS  Google Scholar 

  60. V. Orlovsky and Y. A. Simonov, Int. J. Mod. Phys. A 30, 1550060 (2015).

    Article  ADS  Google Scholar 

  61. Y. Aoki, S. Borsanyi, S. Durr, Z. Fodor, S. D. Katz, S. Krieg, and K. K. Szabo, J. High Energy Phys. 0906, 088 (2009).

    Article  ADS  Google Scholar 

  62. S. Borsanyi, G. Endrodi, Z. Fodor, A. Jakovac, S. D. Katz, S. Krieg, C. Ratti, and K. K. Szabo, J. High Energy Phys. 1011, 077 (2010).

    Article  ADS  Google Scholar 

  63. A. Tawfik, Int. J. Mod. Phys. A 29, 1430021 (2014).

    Article  MathSciNet  ADS  Google Scholar 

  64. E. S. Fraga, Lect. Notes Phys. 871, 121 (2013).

    Article  ADS  Google Scholar 

  65. E. S. Fraga and L. F. Palhares, Phys. Rev. D 86, 016008 (2012).

    Article  ADS  Google Scholar 

  66. A. Tawfik, A. Diab, and M. T. Hussein, Phys. Rev. C (2017, submitted).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Tawfik.

Additional information

The article is published in the original.

Published in Russian in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 153, No. 5, pp. 745–760.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tawfik, A.N., Diab, A.M. & Hussein, M.T. SU(3) Polyakov Linear-Sigma Model: Magnetic Properties of QCD Matter in Thermal and Dense Medium. J. Exp. Theor. Phys. 126, 620–632 (2018). https://doi.org/10.1134/S1063776118050138

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776118050138

Navigation