Advertisement

Magnetic Dichroism in the Reflectivity of Linearly Polarized Synchrotron Radiation from a Ti(10 nm)/Gd0.23Co0.77(250 nm)/Ti(10 nm) Sample

  • M. A. AndreevaEmail author
  • R. A. Baulin
  • M. M. Borisov
  • E. A. Gan’shina
  • G. V. Kurlyandskaya
  • E. Kh. Mukhamedzhanov
  • Yu. L. Repchenko
  • A. V. Svalov
Order, Disorder, and Phase Transition in Condensed System
  • 19 Downloads

Abstract

The dichroic effect (“rotated” polarization) in the reflectivity from a magnetically ordered sample is experimentally studied at the station PHASE of the Kurchatov Synchrotron Radiation Source. The experiments are performed for the Gd0.23Co0.77 film, which has a compensation temperature Tcomp ≈ 433 K, using linearly polarized radiation of the photon energy of 7930 eV (L2 absorption edge of gadolinium) at room temperature. The developed theory of reflectivity accounted for the magnetic contributions to the scattering amplitude predicts the appearance of a peak for the orthogonal (to the incident polarization) polarization of the reflected radiation near the critical angle of the total external reflection. The experiment reveals the significant difficulties because of the incomplete σ polarization of the synchrotron beam, the beam instability, and so on. Therefore, a rotated-polarization peak has been detected near the critical angle but at the limits of the measurement accuracy. In principle, our experimental technique could be an alternative to circular polarization experiments, which are widely used at synchrotrons to study magnetic ordering. However, as we have shown, it makes high demands of the radiation source parameters.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. G. Ovchinnikov, Phys. Usp. 42, 779 (1999).ADSCrossRefGoogle Scholar
  2. 2.
    J. B. Kortright, D. D. Awschalom, J. Stöhr, et al., J. Magn. Magn. Mater. 207, 7 (1999).ADSCrossRefGoogle Scholar
  3. 3.
    G. van der Laan, J. Phys.: Conf. Ser. 430, 012127 (2013).Google Scholar
  4. 4.
    C. Sorg, A. Scherz, K. Baberschke, et al., Phys. Rev. B 75, 064428 (2007).ADSCrossRefGoogle Scholar
  5. 5.
    N. Ishimatsu, H. Hashizume, S. Hamada, et al., Phys. Rev. B 60, 9596 (1999).ADSCrossRefGoogle Scholar
  6. 6.
    L. Séve, N. Jaouen, J. M. Tonnerre, et al., Phys. Rev. B 60, 9662 (1999).ADSCrossRefGoogle Scholar
  7. 7.
    N. Jaouen, G. van der Laan, T. K. Johal, et al., Phys. Rev. B 70, 094417 (2004).ADSCrossRefGoogle Scholar
  8. 8.
    F. de Bergevin and M. Brunel, Acta Crystallogr. A 37, 314 (1981).ADSCrossRefGoogle Scholar
  9. 9.
    M. Blume and D. Gibbs, Phys. Rev. B 37, 1779 (1988).ADSCrossRefGoogle Scholar
  10. 10.
    D. E. Moncton, D. Gibbs, and J. Bohr, Nucl. Instrum. Methods Phys. Res., Sect. A 246, 839 (1986).ADSCrossRefGoogle Scholar
  11. 11.
    D. Gibbs, D. R. Harshman, E. D. Isaacs, et al., Phys. Rev. Lett. 61, 1241 (1988).ADSCrossRefGoogle Scholar
  12. 12.
    J. Bohr, D. Gibbs, J. D. Axe, et al., Physica B 159, 93 (1989).ADSCrossRefGoogle Scholar
  13. 13.
    D. B. McWhan, C. Vettier, E. D. Isaacs, et al., Phys. Rev. B 42, 6007 (1990).ADSCrossRefGoogle Scholar
  14. 14.
    J. Bohr, J. Magn. Magn. Mater. 83, 530 (1990).ADSCrossRefGoogle Scholar
  15. 15.
    S. Langridge, G. H. Lander, N. Bernhoeft, et al., Phys. Rev. B 55, 6392 (1997).ADSCrossRefGoogle Scholar
  16. 16.
    V. Fernandez, C. Vettier, F. de Bergevin, et al., Phys. Rev. B 57, 7870 (1998).ADSCrossRefGoogle Scholar
  17. 17.
    W. Neubeck, C. Vettier, V. Fernandez, et al., J. Appl. Phys. 85, 4847 (1999).ADSCrossRefGoogle Scholar
  18. 18.
    R. Caciuffo, L. Paolasini, A. Sollier, et al., Phys. Rev. B 65, 174425 (2002).ADSCrossRefGoogle Scholar
  19. 19.
    D. P. Siddons, M. Hart, Y. Amemiya, et al., Phys. Rev. Lett. 64, 1967 (1990).ADSCrossRefGoogle Scholar
  20. 20.
    S. P. Collins, J. Phys.: Condens. Matter 11, 1159 (1999).ADSGoogle Scholar
  21. 21.
    J. B. Kortright, M. Rice, and R. Carr, Phys. Rev. B 51, 10240 (1995).ADSCrossRefGoogle Scholar
  22. 22.
    J. B. Kortright, M. Rice, S.-K. Kim, et al., J. Magn. Magn. Mater. 191, 79 (1999).ADSCrossRefGoogle Scholar
  23. 23.
    H.-Ch. Mertins, F. Schäfers, A. Gaupp, et al., Phys. Rev. B 61, R874 (2000).ADSCrossRefGoogle Scholar
  24. 24.
    J. B. Kortright and Sang-Koog Kim, Phys. Rev. B 62, 12 (216) (2000).CrossRefGoogle Scholar
  25. 25.
    H.-Ch. Mertins, P. M. Oppeneer, J. Kuneš, et al., Phys. Rev. Lett. 87, 047401 (2001).ADSCrossRefGoogle Scholar
  26. 26.
    D. P. Siddons, J. B. Hastings, G. Faigel, et al., Phys. Rev. Lett. 62, 1384 (1989).ADSCrossRefGoogle Scholar
  27. 27.
    T. S. Toellner, E. E. Alp, W. Sturhahn, et al., Appl. Phys. Lett. 67, 1993 (1995).ADSCrossRefGoogle Scholar
  28. 28.
    D. P. Siddons, U. Bergmann, and J. B. Hastings, Phys. Rev. Lett. 70, 359 (1993).ADSCrossRefGoogle Scholar
  29. 29.
    D. P. Siddons, U. Bergmann, and J. B. Hastings, Hyperfine Interact. 123/124, 681 (1999).CrossRefGoogle Scholar
  30. 30.
    J. P. Hannon, G. T. Trammell, M. Blume, et al., Phys. Rev. Lett. 61, 1245 (1988).ADSCrossRefGoogle Scholar
  31. 31.
    S. A. Stepanov and S. K. Sinha, Phys. Rev. B 61, 15302 (2000).ADSCrossRefGoogle Scholar
  32. 32.
    R. Azzam and N. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977; Mir, Moscow, 1981).Google Scholar
  33. 33.
    G. N. Borzdov, L. M. Barkovskii, and V. I. Lavrukovich, Zh. Prikl. Spektrosc. 25, 526 (1976).Google Scholar
  34. 34.
    M. A. Andreeva and A. G. Smekhova, Appl. Surf. Sci. 252, 5619 (2006).ADSCrossRefGoogle Scholar
  35. 35.
    E. E. Odintsova and M. A. Andreeva, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 4, 913 (2010).CrossRefGoogle Scholar
  36. 36.
    M. A. Andreeva and Y. L. Repchenko, Crystallogr. Rep. 58, 1037 (2013).ADSCrossRefGoogle Scholar
  37. 37.
    M. A. Andreeva and Yu. L. Repchenko, https://doi.org/kftt.phys.msu.ru/index.php?id=47.
  38. 38.
    Y. Choi, D. Haskel, R. E. Camley, et al., Phys. Rev. B 70, 134420 (2004).ADSCrossRefGoogle Scholar
  39. 39.
  40. 40.
    B. L. Henke, Phys. Rev. A 6, 94 (1972).ADSCrossRefGoogle Scholar
  41. 41.
    G. M. Bedzyk, J. S. Bommarito, and J. S. Schildkraut, Phys. Rev. Lett. 62, 1376 (1989).ADSCrossRefGoogle Scholar
  42. 42.
    M. V. Koval’chuk, N. N. Novikova, and S. N. Yakunin, Priroda, No. 12, 3 (2012).Google Scholar
  43. 43.
    M. A. Andreeva and B. Lindgren, JETP Lett. 76, 704 (2002).ADSCrossRefGoogle Scholar
  44. 44.
    M. A. Andreeva and B. Lindgren, Phys. Rev. B 72, 125422 (2005).ADSCrossRefGoogle Scholar
  45. 45.
    L. G. Parratt, Phys. Rev. 95, 359 (1954).ADSCrossRefGoogle Scholar
  46. 46.
    R. Hasegawa, R. J. Gambino, and R. Ruf, Appl. Phys. Lett. 27, 512 (1975).ADSCrossRefGoogle Scholar
  47. 47.
    R. C. Taylor and A. Gangulee, J. Appl. Phys. 47, 4666 (1976).ADSCrossRefGoogle Scholar
  48. 48.
    N. Kawamura, M. Suzuki, H. Maruyama, et al., J. Synchrotr. Rad. 8, 425 (2001).CrossRefGoogle Scholar
  49. 49.
    E. Meltchakov, H.-Ch. Mertins, M. Scheer, et al., J. Magn. Magn. Mater. 240, 550 (2002).ADSCrossRefGoogle Scholar
  50. 50.
    M. V. Ryabukhina, E. A. Kravtsov, D. V. Blagodatkov, L. I. Naumova, Yu. V. Nikitenko, V. V. Proglyado, and Yu. N. Khaydukov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 9, 41 (2015).CrossRefGoogle Scholar
  51. 51.
    A. V. Svalov, G. V. Kurlyandskaya, K. G. Balymov, and V. O. Vas’kovskii, Phys. Met. Metallogr. 117, 876 (2016).ADSCrossRefGoogle Scholar
  52. 52.
    A. V. Svalov, G. V. Kurlyandskaya, and V. O. Vas’kovskiy, Appl. Phys. Lett. 108, 063504 (2016).ADSCrossRefGoogle Scholar
  53. 53.
    J. C. T. Lee, J. Chess, S. A. Montoya, et al., arXiv:1603.07882v1.Google Scholar
  54. 54.
    M. A. Andreeva, R. A. Baulin, M. M. Borisov, et al., in Proceedings of the Conference on X-Ray Optics, Chernogolovka, Moscow Region, Sept. 26–29, 2016, p. 6.Google Scholar
  55. 55.
    M. A. Andreeva, R. A. Baulin, A. I. Chumakov, et al., in Proceedings of the International Conference on the Applications ofthe Mössbauer Effect ICAME 2017, St.-Petersburg, Sept. 3–8, 2017, p. 37.Google Scholar
  56. 56.
    M. A. Andreeva, R. A. Baulin, A. I. Chumakov, and R. Rüffer, J. Appl. Phys. (2018, submitted).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • M. A. Andreeva
    • 1
    Email author
  • R. A. Baulin
    • 1
  • M. M. Borisov
    • 2
  • E. A. Gan’shina
    • 1
  • G. V. Kurlyandskaya
    • 3
  • E. Kh. Mukhamedzhanov
    • 2
  • Yu. L. Repchenko
    • 2
  • A. V. Svalov
    • 3
  1. 1.Moscow State UniversityMoscowRussia
  2. 2.National Research Centre “Kurchatov Institute,”MoscowRussia
  3. 3.Ural Federal UniversityYekaterinburgRussia

Personalised recommendations