Advertisement

Kinetic Equation for the Density Matrix of Atoms in the Field of a Broadband One-Photon Packet Taking into Account the Non-Wiener Dynamics

  • A. I. Trubilko
  • A. M. Basharov
Atoms, Molecules, Optics
  • 22 Downloads

Abstract

We have derived the quantum master kinetic equation for the density matrix of an atomic system in the field of a narrow-beam one-photon broadband packet in the conditions when the latter plays the role of a thermostat. This equation takes into account the Stark interaction of atoms with the broadband field of surroundings of the system, which are in the state with zero photon number density, as well as the interaction of broadband fields at the atomic system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Lindblad, Commun. Math. Phys. 48, 119 (1976).CrossRefADSGoogle Scholar
  2. 2.
    V. Gorini, A. Frigerio, M. Verri, A. Kossakowski, and E. C. G. Sudarshan, Rep. Math. Phys. 13, 149 (1978).MathSciNetCrossRefADSGoogle Scholar
  3. 3.
    A. M. Basharov, V. N. Gorbachev, and A. A. Rodichkina, Phys. Rev. A 74, 042313 (2006).CrossRefADSGoogle Scholar
  4. 4.
    A. M. Basharov, J. Phys.: Conf. Ser. 613, 012007 (2015).Google Scholar
  5. 5.
    S. M. Chumakov, A. B. Klimov, and C. Saavedra, Phys. Rev. A 61, 033814 (2000).CrossRefADSGoogle Scholar
  6. 6.
    A. V. Dodonov, Phys. Scripta 86, 025405 (2012).CrossRefADSGoogle Scholar
  7. 7.
    A. M. Basharov, J. Exp. Theor. Phys. 115, 371 (2012).CrossRefADSGoogle Scholar
  8. 8.
    C. W. Gardiner and M. J. Collett, Phys. Rev. A 31, 3761 (1985).MathSciNetCrossRefADSGoogle Scholar
  9. 9.
    C. W. Gardiner and P. Zoller, Quantum Noise (Springer, Berlin, 2000, 2004).CrossRefzbMATHGoogle Scholar
  10. 10.
    A. M. Basharov, Sov. Phys. JETP 75, 611 (1992).Google Scholar
  11. 11.
    V. N. Gorbachev and A. I. Trubilko, J. Exp. Theor. Phys. 105, 314 (2007).CrossRefADSGoogle Scholar
  12. 12.
    V. N. Gorbachev and A. I. Trubilko, J. Exp. Theor. Phys. 108, 203 (2009).CrossRefADSGoogle Scholar
  13. 13.
    V. N. Gorbachev and A. I. Trubilko, J. Exp. Theor. Phys. 111, 544 (2010).CrossRefADSGoogle Scholar
  14. 14.
    F. Benatti, F. Carollo, and R. Floreanini, J. Math. Phys. 57, 062208 (2016).MathSciNetCrossRefADSGoogle Scholar
  15. 15.
    P.-O. Guimond, H. Pichler, A. Rauschenbeutel, and P. Zoller, Phys. Rev. A 94, 033829 (2016).CrossRefADSGoogle Scholar
  16. 16.
    A. Barchielli, Rep. Math. Phys. 77, 315 (2016).MathSciNetCrossRefADSGoogle Scholar
  17. 17.
    K. Ohki, K. Tsumura, and R. Takeuchi, J. Phys. B 50, 125503 (2017).CrossRefADSGoogle Scholar
  18. 18.
    A. M. Basharov, Phys. Rev. A 84, 013801 (2011).CrossRefADSGoogle Scholar
  19. 19.
    A. M. Basharov, J. Exp. Theor. Phys. 113, 376 (2011).CrossRefADSGoogle Scholar
  20. 20.
    R. L. Hudson and K. R. Parthasarathy, Commun. Math. Phys. 93, 301 (1984).CrossRefADSGoogle Scholar
  21. 21.
    A. M. Chebotarev, Lectures on Quantum Probability (Soc. Mat. Mex., 2000).zbMATHGoogle Scholar
  22. 22.
    A. S. Kholevo, Statistical Structure of Quantum Theory (IKI, Moscow, 2003; Springer, Berlin, 2001).zbMATHGoogle Scholar
  23. 23.
    B. Q. Baragiola, R. L. Cook, A. M. Branczyk, and J. Combes, Phys. Rev. A 86, 013811 (2012).CrossRefADSGoogle Scholar
  24. 24.
    A. Dabrowska, G. Sarbicki, and D. Chruscinski, Phys. Rev. A 96, 053819 (2017).CrossRefADSGoogle Scholar
  25. 25.
    A. Dabrowska, arXiv:1611.06359v5 [quant-ph] (2017).Google Scholar
  26. 26.
    B. Q. Baragiola and J. Combes, Phys. Rev. A 96, 023819 (2017).CrossRefADSGoogle Scholar
  27. 27.
    K. M. Gheri, K. Ellinger, T. Pellizzari, and P. Zoller, Fortschr. Phys. 46, 401 (1998).CrossRefGoogle Scholar
  28. 28.
    F. Benatti, F. Carollo, and R. Floreanini, J. Math. Phys. 57, 062208 (2016).MathSciNetCrossRefADSGoogle Scholar
  29. 29.
    J. A. Gross, C. M. Caves, G. J. Milburn, and J. Combes, arXiv:1611.06359v5 [quant-ph] (2017).Google Scholar
  30. 30.
    K. A. Fischer et al., arXiv:1710.02875v3 [quant-ph] (2017).Google Scholar
  31. 31.
    V. Link and W. T. Strunz, Phys. Rev. Lett. 119, 180401 (2017).MathSciNetCrossRefADSGoogle Scholar
  32. 32.
    A. I. Maimistov and A. M. Basharov, Nonlinear Optical Waves (Kluwer Academic, Dordrecht, 1999).CrossRefzbMATHGoogle Scholar
  33. 33.
    M. Lax, Phys. Rev. 145, 110 (1966).CrossRefADSGoogle Scholar
  34. 34.
    H. Frohlich, Phys. Rev. 79, 845 (1950).CrossRefADSGoogle Scholar
  35. 35.
    G. L. Bir and G. E. Pikus, Symmetry and Stain-Induced Effects in Semiconductors (Nauka, Moscow, 1972; Wiley, New York, 1975).Google Scholar
  36. 36.
    Yu. A. Firsov, Polarons (Nauka, Moscow, 1975) [in Russian].Google Scholar
  37. 37.
    M. Wagner, Unitary Transformations in Solid State Physics (North-Holland, Amsterdam, 1986).Google Scholar
  38. 38.
    A. M. Basharov, J. Phys.: Conf. Ser. 859, 012003 (2017).Google Scholar
  39. 39.
    V. N. Bogaevski and A. Povzner, Algebraic Methods in Nonlinear Perturbations Theory (Springer, Berlin, Heidelberg, 1991).CrossRefGoogle Scholar
  40. 40.
    M. Takatsuji, Phys. Rev. 155, 980 (1967).CrossRefADSGoogle Scholar
  41. 41.
    M. Takatsuji, Phys. Rev. B 2, 340 (1970).CrossRefADSGoogle Scholar
  42. 42.
    M. Takatsuji, Phys. Rev. A 4, 808 (1971).CrossRefADSGoogle Scholar
  43. 43.
    M. Takatsuji, Physica (Amsterdam) 51, 265 (1971).CrossRefADSGoogle Scholar
  44. 44.
    M. Takatsuji, Phys. Rev. A 11, 619 (1975).CrossRefADSGoogle Scholar
  45. 45.
    N. N. Bogolyubov and Yu. A. Mitropol’skii, Asymptotic Methods in Theory of Nonlinear Oscillations (GIFML, Moscow, 1958) [in Russian].zbMATHGoogle Scholar
  46. 46.
    K. G. Katamadze, N. A. Borshchevskaya, I. V. Dyakonov, et al., Phys. Rev. A 92, 023812 (2015).CrossRefADSGoogle Scholar
  47. 47.
    A. E. Teretenkov, Math. Notes 102, 846 (2017).MathSciNetCrossRefGoogle Scholar
  48. 48.
    J. R. Bolanos-Servin and F. Fagnola, J. Phys.: Conf. Ser. 819, 012003 (2017).MathSciNetGoogle Scholar
  49. 49.
    C. Ou, R. V. Chamberlin, and S. Abe, Phys. A (Amsterdam, Neth.) 466, 450 (2017).CrossRefADSGoogle Scholar
  50. 50.
    H. C. F. Lemos and T. Prosen, Phys. Rev. E 95, 042137 (2017).MathSciNetCrossRefADSGoogle Scholar
  51. 51.
    O. Furtmaier and M. Mendoza, Phys. Rev. A 96, 022134 (2017).CrossRefADSGoogle Scholar
  52. 52.
    K. Blum, Density Matrix Theory and Applications (Plenum, New York, 1996; Mir, Moscow, 1983).CrossRefzbMATHGoogle Scholar
  53. 53.
    V. S. Butylkin, A. E. Kaplan, Yu. G. Khronopulo, and E. I. Yakubovich, Resonant Nonlinear Interactions of Light with Matter (Nauka, Moscow, 1977; Springer, Berlin, 1989).Google Scholar
  54. 54.
    A. M. Basharov, A. I. Maimistov, and E. A. Manykin, Sov. Phys. JETP 57, 282 (1983).Google Scholar
  55. 55.
    P. W. Milonni, The Quantum Vacuum (Academic, Boston, 1994).Google Scholar
  56. 56.
    M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge Univ., Cambridge, 1997; Fizmatlit, Moscow, 2003).CrossRefzbMATHGoogle Scholar
  57. 57.
    W. Heitler, The Quantum Theory of Radiation (Oxford Univ. Press, London, 1954; Inostr. Liter., Moscow, 1956).zbMATHGoogle Scholar
  58. 58.
    Zhiguo Lu et al., J. Phys. A 50, 074002 (2017).MathSciNetCrossRefADSGoogle Scholar
  59. 59.
    L. Garbe, I. L. Egusquiza, E. Solano, C. Ciuti, T. Coudreau, P. Milman, and S. Felicetti, Phys. Rev. A 95, 053854 (2017).CrossRefADSGoogle Scholar
  60. 60.
    J. Peng, C. Zheng, G. Guo, X. Guo, X. Zhang, C. Deng, G. Ju, Z. Ren, L. Lamata, and E. Solano, J. Phys. A 50, 174003 (2017).MathSciNetCrossRefADSGoogle Scholar
  61. 61.
    Y.-Z. Zhang, Rev. Math. Phys. 29, 1750013 (2017).MathSciNetCrossRefGoogle Scholar
  62. 62.
    A. M. Basharov, J. Exp. Theor. Phys. 126, 375 (2018).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.St. Petersburg State University of State Fire Service of Emercom of RussiaSt. PetersburgRussia
  2. 2.National Research Center “Kurchatov Institute,”MoscowRussia
  3. 3.Moscow Institute of Physics and Technology (Technical University)Dolgoprudnyi, Moscow oblastRussia

Personalised recommendations