Skip to main content
Log in

Electronic Structure of FeSe Monolayer Superconductors: Shallow Bands and Correlations

  • Order, Disorder, and Phase Transition in Condensed System
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Electronic spectra of typical single FeSe layer superconductor—FeSe monolayer film on SrTiO3 substrate (FeSe/STO) obtained from ARPES data reveal several puzzles: what is the origin of shallow and the so called “replica” bands near the M-point and why the hole-like Fermi surfaces near the Γ-point are absent. Our extensive LDA+DMFT calculations show that correlation effects on Fe-3d states can almost quantitatively reproduce rather complicated band structure, which is observed in ARPES, in close vicinity of the Fermi level for FeSe/STO. Rather unusual shallow electron-like bands around the M-point in the Brillouin zone are well reproduced. Detailed analysis of the theoretical and experimental quasiparticle bands with respect to their origin and orbital composition is performed. It is shown that for FeSe/STO system the LDA calculated Fe-3d xy band, renormalized by electronic correlations within DMFT gives the quasiparticle band almost exactly in the energy region of the experimentally observed “replica” quasiparticle band at the Mpoint. However, correlation effects alone are apparently insufficient to eliminate the hole-like Fermi surfaces around the Γ-point, which are not observed in most ARPES experiments. The Fermi surfaces remain here even if Coulomb and/or Hund interaction strengths are increased while overall agreement with ARPES worsens. Increase of number of electrons also does not lead to vanishing of this Fermi surface and makes agreement of LDA+DMFT results with ARPES data much worse. We also present some simple estimates of “forward scattering” electron-optical phonon interaction at FeSe/STO interface, showing that it is apparently irrelevant for the formation of “replica” band in this system and significant increase of superconducting T c .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. V. Sadovskii, Phys. Usp. 51, 1201 (2008).

    Article  ADS  Google Scholar 

  2. K. Ishida, Y. Nakai, and H. Hosono, J. Phys. Soc. Jpn. 78, 062001 (2009).

    Article  ADS  Google Scholar 

  3. D. C. Johnston, Adv. Phys. 59, 803 (2010).

    Article  ADS  Google Scholar 

  4. P. J. Hirschfeld, M. M. Korshunov, and I. I. Mazin, Rep. Prog. Phys. 74, 124508 (2011).

    Article  ADS  Google Scholar 

  5. G. R. Stewart, Rev. Mod. Phys. 83, 1589 (2011).

    Article  ADS  Google Scholar 

  6. A. A. Kordyuk, Low Temp. Phys. 38, 888 (2012).

    Article  ADS  Google Scholar 

  7. Y. Mizuguchi and Y. Takano, J. Phys. Soc. Jpn. 79, 102001 (2010).

    Article  ADS  Google Scholar 

  8. M. Sadovskii, E. Kuchinskii, and I. Nekrasov, J. Magn. Magn. Mater. 324, 3481 (2012).

    Article  ADS  Google Scholar 

  9. I. A. Nekrasov and M. V. Sadovskii, JETP Lett. 99, 598 (2014).

    Article  ADS  Google Scholar 

  10. J. Guo, S. Jin, G. Wang, S. Wang, K. Zhu, T. Zhou, M. He, and X. Chen, Phys. Rev. B 82, 180520 (2010).

    Article  ADS  Google Scholar 

  11. Y. J. Yan, M. Zhang, A. F. Wang, J. J. Ying, Z. Y. Li, W. Qin, X. G. Luo, J. Q. Li, J. p. Hu, and X. H. Chen, Sci. Rep. 2 (2012). doi 10.1038/srep00212

  12. A. Krzton-Maziopa, V. Svitlyk, E. Pomjakushina, R. Puzniak, and K. Conder, J. Phys.: Condens. Matter 28, 293002 (2016).

    Google Scholar 

  13. T. Hatakeda, T. Noji, T. Kawamata, M. Kato, and Y. Koike, J. Phys. Soc. Jpn. 82, 123705 (2013).

    Article  ADS  Google Scholar 

  14. M. Burrard-Lucas, D. G. Free, S. J. Sedlmaier, J. D. Wright, S. J. Cassidy, Y. Hara, A. J. Corkett, T. Lancaster, P. J. Baker, S. J. Blundell, and S. J. Clarke, Nat. Mater. 12, 15 (2013).

    Article  ADS  Google Scholar 

  15. X. F. Lu, N. Z. Wang, H. Wu, Y. P. Wu, D. Zhao, X. Z. Zeng, X. G. Luo, T. Wu, W. Bao, G. H. Zhang, F. Q. Huang, Q. Z. Huang, and X. H. Chen, Nat. Mater. 14, 325 (2014).

    Article  ADS  Google Scholar 

  16. U. Pachmayr, F. Nitsche, H. Luetkens, S. Kamusella, F. Brückner, R. Sarkar, H.-H. Klauss, and D. Johrendt, Angew. Chem. Int. Ed. 54, 293 (2015).

    Article  Google Scholar 

  17. Q.-Y. Wang, Z. Li, W.-H. Zhang, Z.-C. Zhang, J.-S. Zhang, W. Li, H. Ding, Y.-B. Ou, P. Deng, K. Chang, J. Wen, C.-L. Song, K. He, J.-F. Jia, S.-H. Ji, et al., Chin. Phys. Lett. 29, 037402 (2012).

    Article  ADS  Google Scholar 

  18. J.-F. Ge, Z.-L. Liu, C. Liu, C.-L. Gao, D. Qian, Q.-K. Xue, Y. Liu, and J.-F. Jia, Nat. Mater. 14, 285 (2014).

    Article  ADS  Google Scholar 

  19. Y. Miyata, K. Nakayama, K. Sugawara, T. Sato, and T. Takahashi, Nat. Mater. 14, 775 (2015).

    Article  ADS  Google Scholar 

  20. G. Zhou, D. Zhang, C. Liu, C. Tang, X. Wang, Z. Li, C. Song, S. Ji, K. He, L. Wang, X. Ma, and Q.-K. Xue, Appl. Phys. Lett. 108, 202603 (2016).

    Article  ADS  Google Scholar 

  21. R. Peng, H. C. Xu, S. Y. Tan, H. Y. Cao, M. Xia, X. P. Shen, Z. C. Huang, C. Wen, Q. Song, T. Zhang, B. P. Xie, X. G. Gong, and D. L. Feng, Nat. Comm. 5, 5044 (2014).

    Article  ADS  Google Scholar 

  22. H. Ding, Y.-F. Lv, K. Zhao, W.-L. Wang, L. Wang, C.-L. Song, X. Chen, X.-C. Ma, and Q.-K. Xue, Phys. Rev. Lett. 117, 067001 (2016).

    Article  ADS  Google Scholar 

  23. C.-L. Song, Y.-L. Wang, Y.-P. Jiang, Z. Li, L. Wang, K. He, X. Chen, X.-C. Ma, and Q.-K. Xue, Phys. Rev. B 84 (2011). doi 10.1103/PhysRevB.84.020503

  24. X. Liu, L. Zhao, S. He, J. He, D. Liu, D. Mou, B. Shen, Y. Hu, J. Huang, and X. J. Zhou, J. Phys.: Condens. Matter 27, 183201 (2015).

    ADS  Google Scholar 

  25. M. V. Sadovskii, Phys. Usp. 59, 947 (2016).

    Article  ADS  Google Scholar 

  26. E. Z. Kuchinskii and M. V. Sadovskii, JETP Lett. 91, 660 (2010).

    Article  ADS  Google Scholar 

  27. S. L. Skornyakov, A. V. Efremov, N. A. Skorikov, M. A. Korotin, Y. A. Izyumov, V. I. Anisimov, A. V. Kozhevnikov, and D. Vollhardt, Phys. Rev. B 80 (2009). doi 10.1103/PhysRevB.80.092501

  28. I. A. Nekrasov, N. S. Pavlov, and M. V. Sadovskii, JETP Lett. 102, 26 (2015).

    Article  ADS  Google Scholar 

  29. I. A. Nekrasov and M. V. Sadovskii, JETP Lett. 93, 166 (2011).

    Article  ADS  Google Scholar 

  30. I. Shein and A. Ivanovskii, Phys. Lett. A 375, 1028 (2011).

    Article  ADS  Google Scholar 

  31. L. Zhao, D. Mou, S. Liu, X. Jia, J. He, Y. Peng, L. Yu, X. Liu, G. Liu, S. He, X. Dong, J. Zhang, J. B. He, D.M. Wang, G. F. Chen, et al., Phys. Rev. B 83 (2011). doi 10.1103/PhysRevB.83.140508

  32. I. A. Nekrasov, N. S. Pavlov, and M. V. Sadovskii, JETP Lett. 97, 15 (2013).

    Article  ADS  Google Scholar 

  33. I. A. Nekrasov, N. S. Pavlov, and M. V. Sadovskii, J. Exp. Theor. Phys. 117, 926 (2013).

    Article  ADS  Google Scholar 

  34. I. A. Nekrasov, N. S. Pavlov, and M. V. Sadovskii, JETP Lett. 105, 370 (2017).

    Article  ADS  Google Scholar 

  35. M. Yi, D. H. Lu, R. Yu, S. C. Riggs, J.-H. Chu, B. Lv, Z. K. Liu, M. Lu, Y.-T. Cui, M. Hashimoto, S.-K. Mo, Z. Hussain, C. W. Chu, I. R. Fisher, Q. Si, and Z.-X. Shen, Phys. Rev. Lett. 110 (2013). doi 10.1103/PhysRevLett.110.067003

  36. X. H. Niu, S. D. Chen, J. Jiang, Z. R. Ye, T. L. Yu, D. F. Xu, M. Xu, Y. Feng, Y. J. Yan, B. P. Xie, J. Zhao, D. C. Gu, L. L. Sun, Q. Mao, H. Wang, et al., Phys. Rev. B 93 (2016). doi 10.1103/PhysRevB.93.054516

  37. I. A. Nekrasov, N. S. Pavlov, M. V. Sadovskii, and A. A. Slobodchikov, Low Temp. Phys. 42, 891 (2016).

    Article  ADS  Google Scholar 

  38. A. Subedi, L. Zhang, D. J. Singh, and M. H. Du, Phys. Rev. B 78 (2008). doi 10.1103/Phys-RevB.78.134514

  39. F. Zheng, Z. Wang, W. Kang, and P. Zhang, Sci. Rep. 3, 2213 (2013).

    Article  ADS  Google Scholar 

  40. P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties wIEN2k 16.1, Release12/12/2016 (Vienna Univ. Technol., Inst. Mater. Chem., Vienna, Austria, 2016).

    Google Scholar 

  41. J. Kune, R. Arita, P. Wissgott, A. Toschi, H. Ikeda, and K. Held, Comput. Phys. Comm. 18181, 1888 (2010).

    Article  ADS  Google Scholar 

  42. A. A. Mosto, J. R. Yates, Y.-S. Lee, I. Souza, D. Vanderbilt, and N. Marzari, Comput. Phys. Comm. 178, 685 (2008).

    Article  ADS  Google Scholar 

  43. P. Werner, A. Comanac, L. de’ Medici, M. Troyer, and A. J. Millis, Phys. Rev. Lett. 97, 076405 (2006).

    Article  ADS  Google Scholar 

  44. K. Haule, Phys. Rev. B 75, 155113 (2007).

    Article  ADS  Google Scholar 

  45. E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov, M. Troyer, and P. Werner, Rev. Mod. Phys. 83, 349 (2011).

    Article  ADS  Google Scholar 

  46. O. Parcollet, M. Ferrero, T. Ayral, H. Hafermann, I. Krivenko, L. Messio, and P. Seth, Comput. Phys. Commun. 196, 398 (2015). https://doi.org/ipht.cea.fr/triqs

    Article  ADS  Google Scholar 

  47. I. A. Nekrasov, N. S. Pavlov, and M. V. Sadovskii, J. Exp. Theor. Phys. 116, 620 (2013).

    Article  ADS  Google Scholar 

  48. H. J. Vidberg and J. W. Serene, J. Low Temp. Phys. 29, 179 (1977).

    Article  ADS  Google Scholar 

  49. M. Jarrell and J. Gubernatis, Phys. Rep. 269, 133 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  50. D. Liu, W. Zhang, D. Mou, J. He, Y.-B. Ou, Q.-Y. Wang, Z. Li, L. Wang, L. Zhao, S. He, Y. Peng, X. Liu, C. Chen, L. Yu, G. Liu, X. Dong, J. Zhang, C. Chen, Z. Xu, J. Hu, X. Chen, X. Ma, Q. Xue, and X. Zhou, Nat. Comm. 3, 931 (2012).

    Article  Google Scholar 

  51. J. J. Lee, F. T. Schmitt, R. G. Moore, S. Johnston, Y.-T. Cui, W. Li, M. Yi, Z. K. Liu, M. Hashimoto, Y. Zhang, D. H. Lu, T. P. Devereaux, D.-H. Lee, and Z.-X. Shen, Nature (London, U.K.) 515, 245 (2014).

    Article  ADS  Google Scholar 

  52. L. Zhao, A. Liang, D. Yuan, Y. Hu, D. Liu, J. Huang, S. He, B. Shen, Y. Xu, X. Liu, L. Yu, G. Liu, H. Zhou, Y. Huang, X. Dong, F. Zhou, K. Liu, Z. Lu, Z. Zhao, C. Chen, Z. Xu, and X. J. Zhou, Nat. Comm. 7, 10608 (2016).

    Article  ADS  Google Scholar 

  53. H. Fu, K. V. Reich, and B. I. Shklovskii, J. Exp. Theor. Phys. 122, 456 (2016).

    Article  ADS  Google Scholar 

  54. Y. Zhou and A. J. Millis, Phys. Rev. B 93, 224506 (2016).

    Article  ADS  Google Scholar 

  55. M. X. Chen, Z. Ge, Y. Y. Li, D. F. Agterberg, L. Li, and M. Weinert, Phys. Rev. B 94, 245139 (2016).

    Article  ADS  Google Scholar 

  56. J. J. Lee, F. T. Schmitt, R. G. Moore, S. Johnston, Y.-T. Cui, W. Li, M. Yi, Z. K. Liu, M. Hashimoto, Y. Zhang, D. H. Lu, T. P. Devereaux, D.-H. Lee, and Z.-X. Shen, Nature (London, U.K.) 515, 245 (2014).

    Article  ADS  Google Scholar 

  57. L. P. Gor’kov, Phys. Rev. B 93, 060507 (2016).

    Article  ADS  Google Scholar 

  58. L. P. Gor’kov, Phys. Rev. B 93, 054517 (2016).

    Article  ADS  Google Scholar 

  59. L. Rademaker, Y. Wang, T. Berlijn, and S. Johnston, New J. Phys. 18, 022001 (2016).

    Article  ADS  Google Scholar 

  60. Y. Wang, K. Nakatsukasa, L. Rademaker, T. Berlijn, and S. Johnston, Supercond. Sci. Technol. 29, 054009 (2016).

    Article  ADS  Google Scholar 

  61. M. Sunagawa, K. Terashima, T. Hamada, H. Fujiwara, T. Fukura, A. Takeda, M. Tanaka, H. Takeya, Y. Takano, M. Arita, K. Shimada, H. Namatame, M. Taniguchi, K. Suzuki, H. Usui, K. Kuroki, T. Wakita, Y. Muraoka, and T. Yokoya, J. Phys. Soc. Jpn. 85, 073704 (2016).

    Article  ADS  Google Scholar 

  62. M. D. Watson, T. K. Kim, A. A. Haghighirad, N. R. Davies, A. McCollam, A. Narayanan, S. F. Blake, Y. L. Chen, S. Ghannadzadeh, A. J. Schoeld, M. Hoesch, C. Meingast, T. Wolf, and A. I. Coldea, Phys. Rev. B 91, 155106 (2015).

    Article  ADS  Google Scholar 

  63. L. de Medici, G. Giovannetti, and M. Capone, Phys. Rev. Lett. 112, 177001 (2014).

    Article  ADS  Google Scholar 

  64. Z. P. Yin, K. Haule, and G. Kotliar, Nat. Mater. 10, 932 (2011).

    Article  ADS  Google Scholar 

  65. M. L. Kulic and O. V. Dolgov, New J. Phys. 19, 013020 (2017).

    Article  ADS  Google Scholar 

  66. O. V. Danylenko, O. V. Dolgov, M. L. Kulic, and V. Oudovenko, Eur. Phys. J. B 9, 201 (1999).

    Article  ADS  Google Scholar 

  67. M. L. Kulic, AIP Conf. Proc. 715, 75 (2004).

    Article  ADS  Google Scholar 

  68. P. B. Allen, Phys. Rev. B 6, 2577 (1972).

    Article  ADS  Google Scholar 

  69. Y. Wang, A. Linscheid, T. Berlijn, and S. Johnston, Phys. Rev. B 93, 134513 (2016).

    Article  ADS  Google Scholar 

  70. Y. Zhou and A. J. Millis, arXiv:1703.04021 (2017).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Nekrasov.

Additional information

Published in Russian in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 153, No. 4, pp. 582–596.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nekrasov, I.A., Pavlov, N.S. & Sadovskii, M.V. Electronic Structure of FeSe Monolayer Superconductors: Shallow Bands and Correlations. J. Exp. Theor. Phys. 126, 485–496 (2018). https://doi.org/10.1134/S1063776118040106

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776118040106

Navigation