Skip to main content
Log in

Impact of Ultrathin Pb Films on the Topological Surface and Quantum-Well States of Bi2Se3 and Sb2Te3 Topological Insulators

  • Order, Disorder, and Phase Transition in Condensed System
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The effect of an ultrathin Pb film deposited on the surface of Bi2Se3 and Sb2Te3 compounds on the electronic state structure of topological insulators is studied experimentally by the angle-resolved photoemission spectroscopy (ARPES) technique. The following features are revealed: formation of two-dimensional quantum-well states in the near-surface region, an increase in the binding energy of the Dirac cone and the core levels, and a simultaneous electronic states intensity redistribution in the system in photoemission spectra. The results obtained show that topological states may coexist at the interface between studied materials and a superconductor, which seems to be promising for application in quantum computers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).

    Article  ADS  Google Scholar 

  2. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).

    Article  ADS  Google Scholar 

  3. X. L. Qi and S. C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).

    Article  ADS  Google Scholar 

  4. M. V. Filyanina, I. I. Klimovskikh, S. V. Eremeev, et al., Phys. Solid State 58, 754 (2016).

    Article  Google Scholar 

  5. A. M. Shikin, I. I. Klimovskikh, M. V. Filyanina, et al., Phys. Solid State 58, 1675 (2016).

    Article  ADS  Google Scholar 

  6. A. M. Shikin, I. I. Klimovskikh, S. V. Eremeev, et al., Phys. Rev. B 89, 125416 (2014).

    Article  ADS  Google Scholar 

  7. A. M. Shikin, A. A. Rybkina, I. I. Klimovskikh, et al., Appl. Phys. Lett. 109, 222404 (2016).

    Article  ADS  Google Scholar 

  8. I. I. Klimovskikh, D. Sostina, S. Petukhov, et al., Sci. Rep. 7, 45797 (2017).

    Article  ADS  Google Scholar 

  9. K. Miyamoto, A. Kimura, T. Okuda, et al., Phys. Rev. Lett. 109, 166802 (2012).

    Article  ADS  Google Scholar 

  10. S. Zhu, Y. Ishida, K. Kuroda, et al., Sci. Rep. 5, 13213 (2015).

    Article  ADS  Google Scholar 

  11. D. S. Kong, Y. L. Chen, J. J. Cha, et al., Nat. Nanotechnol. 6, 705 (2011).

    Article  ADS  Google Scholar 

  12. S. Suoma, K. Eto, M. Nomura, et al., Phys. Rev. Lett. 108, 116801 (2012).

    Article  ADS  Google Scholar 

  13. H. Zhang, C. X. Liu, X. L. Qi, et al., Nat. Phys. 5, 438 (2009).

    Article  Google Scholar 

  14. Y. L. Chen, J. G. Analytis, J. H. Chu, et al., Science (Washington, DC, U. S.) 325, 178 (2009).

    Article  ADS  Google Scholar 

  15. Z. H. Pan, E. Vescovo, A. V. Fedorov, et al., Phys. Rev. Lett. 106, 257004 (2011).

    Article  ADS  Google Scholar 

  16. J. Zhang, C. Z. Chang, Z. Zhang, et al., Nat. Commun. 2, 574 (2011).

    Article  Google Scholar 

  17. R. C. Hatch, M. Bianchi, D. Guan, et al., Phys. Rev. B 85, 241303 (2011).

    Article  ADS  Google Scholar 

  18. O. E. Tereshchenko, K. A. Kokh, V. V. Atuchin, K. N. Romanyuk, S. V. Makarenko, V. A. Golyashov, A. S. Kozhukhov, I. P. Prosvirin, and A. A. Shklyaev, JETP Lett. 94, 465 (2011).

    Article  ADS  Google Scholar 

  19. J. Dai, W. Wang, M. Brahlek, et al., Nano Res. 8, 1222 (2015).

    Article  Google Scholar 

  20. M. T. Edmonds, J. T. Hellerstedt, A. Tadich, et al., ACS Nano 8, 6400 (2014).

    Article  Google Scholar 

  21. L. A. Wray, S. Y. Xu, Y. Xia, et al., Nat. Phys. 7, 32 (2011).

    Article  Google Scholar 

  22. L. A. Wray, S. Y. Xu, M. Neapane, et al., arXiv:1105.4794.

  23. M. R. Scholz, J. Sanchez-Barriga, D. Marchenko, et al., Phys. Rev. Lett. 108, 256810 (2012).

    Article  ADS  Google Scholar 

  24. A. J. Green, S. Dey, Y. Q. An, et al., J. Vac. Sci. Technol. A 34, 061403 (2016).

    Article  Google Scholar 

  25. S. E. Harrison, L. J. Collins-McIntyre, S. Li, et al., J. Appl. Phys. 115, 023904 (2014).

    Article  ADS  Google Scholar 

  26. H. Bando, K. Koizumi, Y. Oikawa, et al., J. Phys.: Condens. Matter 12, 5607 (2000).

    ADS  Google Scholar 

  27. D. Hsieh, Y. Xia, D. Qian, et al., Nature (London, U.K.) 460, 1001 (2009).

    Article  Google Scholar 

  28. S. Bilinska, K. Idczak, M. Skiscim, et al., Vacuum 122 (Pt. B), 300 (2015).

    Article  ADS  Google Scholar 

  29. X. T. Liu, T. W. Hu, Y. P. Miao, et al., J. Appl. Phys. 117, 065304 (2015).

    Article  ADS  Google Scholar 

  30. I. I. Klimovskikh, M. M. Otrokov, V. Y. Voroshnin, et al., ACS Nano 11, 368 (2017).

    Article  Google Scholar 

  31. D. A. Estyunin, I. I. Klimovskikh, V. Yu. Voroshnin, D. M. Sostina, L. Petaccia, G. di Santo, and A. M. Shikin, J. Exp. Theor. Phys. 125, 762 (2017).

    Article  ADS  Google Scholar 

  32. R. Otero, A. L. Vázquez de Parga, and R. Miranda, Phys. Rev. B 66, 115401 (2002).

    Article  ADS  Google Scholar 

  33. K. Krupski, T. Kobiela, and A. Krupski, Acta Phys. Polon. 125, 1159 (2014).

    Article  Google Scholar 

  34. K. Krupski, Phys. Rev. B 80, 035424 (2009).

    Article  ADS  Google Scholar 

  35. S. Y. Xu, N. Alidoust, I. Belopolski, et al., Nat. Phys. 10, 943 (2014).

    Article  Google Scholar 

  36. K. Nakayama, H. Kimizuka, Y. Tanaka, et al., Phys. Rev. B 92, 100508 (2015).

    Article  ADS  Google Scholar 

  37. L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008).

    Article  ADS  Google Scholar 

  38. Q. L. He, L. Pan, A. L. Stern, et al., Science (Washington, DC, U. S.) 357, 6348 (2017).

    Google Scholar 

  39. C. W. J. Beenakker, Ann. Rev. Condens. Matter Phys. 4, 113 (2013).

    Article  ADS  Google Scholar 

  40. F. Qu, F. Yang, J. Shen, et al., Sci. Rep. 2, 339 (2012).

    Article  Google Scholar 

  41. M. Bianchi, D. Guan, S. Bao, et al., Nat. Commun. 1, 128 (2010).

    Article  Google Scholar 

  42. H. Yang, X. Peng, X. Wei, et al., Phys. Rev. Lett. 86, 155317 (2012).

    Google Scholar 

  43. M. Aitani, Y. Sakamoto, T. Hirahara, et al., Jpn. J. Appl. Phys. 52, 110112 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Surnin.

Additional information

Original Russian Text © Yu.A. Surnin, I.I. Klimovskikh, D.M. Sostina, K.A. Kokh, O.E. Tereshchenko, A.M. Shikin, 2018, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 153, No. 4, pp. 641–647.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surnin, Y.A., Klimovskikh, I.I., Sostina, D.M. et al. Impact of Ultrathin Pb Films on the Topological Surface and Quantum-Well States of Bi2Se3 and Sb2Te3 Topological Insulators. J. Exp. Theor. Phys. 126, 535–540 (2018). https://doi.org/10.1134/S1063776118040088

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776118040088

Navigation