Advertisement

Laser-Induced Phase Transition in a Monolayer of Polymer Particles Levitating in a Low-Pressure Gas-Discharge Plasma

  • E. A. Kononov
  • M. M. Vasiliev
  • O. F. Petrov
Atoms, Molecules, Optics
  • 19 Downloads

Abstract

We report on the results of analysis of the mean kinetic energy and the pair correlation function of polymer particles in a plasma–dust structure under the action of laser radiation. We have observed experimentally the crystal–liquid phase transition in the monolayer of particles levitating in the near-electrode layer of a capacitive high-frequency discharge. The coupling parameter of the dust system has been estimated. The results of analysis of the modification of the polymer dust particle surface after holding in the plasma are considered. We propose an explanation of the phase transition taking into account the role of the photophoretic force in the motion of macroparticles. The effect of the photophoretic force is associated with the modification of the dust particle surface in the plasma, as a result of which the particles can effectively absorb laser radiation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. E. Fortov, A. G. Khrapak, S. A. Khrapak, V. I. Molotkov, and O. F. Petrov, Phys. Usp. 47, 447 (2004).ADSCrossRefGoogle Scholar
  2. 2.
    O. S. Vaulina, O. F. Petrov, V. E. Fortov, et al., Dusty Plasmas. Experiment and Theory (Fizmatlit, Moscow, 2009) [in Russian].Google Scholar
  3. 3.
    H. M. Thomas, G. E. Morfill, A. V. Ivlev, et al., Phys. Rev. Lett. 104, 195001 (2010).ADSCrossRefGoogle Scholar
  4. 4.
    M. M. Vasiliev, O. F. Petrov, and K. B. Statsenko, JETP Lett. 102, 771 (2015).ADSCrossRefGoogle Scholar
  5. 5.
    K. G. Koss, O. F. Petrov, M. I. Myasnikov, K. B. Statsenko, and M. M. Vasiliev, J. Exp. Theor. Phys. 123, 98 (2016).ADSCrossRefGoogle Scholar
  6. 6.
    O. Preining, in Aerosol Science, Ed. by C. N. Davies (Academic, New York, 1966), Vol. 2, p. 111.Google Scholar
  7. 7.
    O. F. Petrov, M. M. Vasiliev, O. S. Vaulina, et al., Europhys. Lett. 111, 45002 (2015).ADSCrossRefGoogle Scholar
  8. 8.
    N. A. Vorona, A. V. Gavrikov, A. S. Ivanov, O. F. Petrov, V. E. Fortov, and I. A. Shakhova, J. Exp. Theor. Phys. 105, 824 (2007).ADSCrossRefGoogle Scholar
  9. 9.
    C. Killer, M. Mulsow, and A. Melzer, Plasma Sources Sci. Technol. 24, 025029 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    V. Yu. Karasev, E. S. Dzlieva, A. P. Gorbenko, et al., Tech. Phys. 62, 496 (2017).CrossRefGoogle Scholar
  11. 11.
    O. S. Vaulina and I. E. Dranzhevski, Phys. Scripta 73, 577 (2006).ADSCrossRefGoogle Scholar
  12. 12.
    Z. Wang, A. M. Alsayed, A. G. Yodh, et al., J. Chem. Phys. 132, 154501 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    G. H. P. M. Swinkels, H. Kersten, H. Deutsch, et al., J. Appl. Phys. 88, 1747 (2000).ADSCrossRefGoogle Scholar
  14. 14.
    Physical Values, The Handbook, Ed. by I. S. Grigor’ev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • E. A. Kononov
    • 1
  • M. M. Vasiliev
    • 1
    • 2
  • O. F. Petrov
    • 1
    • 2
  1. 1.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and TechnologyDolgoprudnyi, Moscow oblastRussia

Personalised recommendations