Skip to main content
Log in

Self-Organization Phenomena in a Cryogenic Gas Discharge Plasma: Formation of a Nanoparticle Cloud and Dust–Acoustic Waves

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The dusty plasma structures in a glow discharge of helium in a tube cooled by superfluid helium at a temperature of 1.6 K and higher have been studied experimentally. The bimodal dust plasma formed by clouds of polydisperse cerium dioxide particles and polymer nanoparticles has been analyzed. We have observed wave oscillations in the cloud of polymer nanoparticles (with a size up to 100 nm), which existed in a narrow temperature range from 1.6 to 2.17 K. Vortices have been observed in the dusty plasma structures at helium temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. E. Fortov, A. G. Khrapak, S. A. Khrapak, V. I. Molotkov, and O. F. Petrov, Phys. Usp. 47, 447 (2004).

    Article  ADS  Google Scholar 

  2. V. E. Fortov, G. E. Morfill, Complex and Dusty Plasmas. From Laboratory to Space (Fizmatlit, Moscow, 2012; CRC, Boca Raton, FL, 2010).

    Google Scholar 

  3. O. F. Petrov, M. M. Vasil’ev, Je Tun, K. B. Statsenko, O. S. Vaulina, E. V. Vasilieva, and V. E. Fortov, J. Exp. Theor. Phys. 120, 327 (2015).

    Article  ADS  Google Scholar 

  4. R. F. Wuerker, H. Shelton, and R. V. Langmuir, J. Appl. Phys. 30, 342 (1959).

    Article  ADS  Google Scholar 

  5. Encyclopedy of Low-Temperature Plasma, Ed. by V. E. Fortov (Yanus-K, Moscow, 2006), Ser. A, Vol. I-2.

  6. V. E. Fortov and G. E. Morfill, Complex and Dusty Plasmas from Laboratory to Space (CRC, London, 2012).

    Google Scholar 

  7. T. S. Ramazanov, L. G. D’yachkov, K. N. Dzhumagulova, et al., Europhys. Lett. 116, 45001 (2016).

    Article  ADS  Google Scholar 

  8. M. I. Myasnikov, L. G. D’yachkov, O. F. Petrov, M. M. Vasiliev, V. E. Fortov, S. F. Savin, and E. O. Serova, J. Exp. Theor. Phys. 124, 318 (2017).

    Article  ADS  Google Scholar 

  9. V. E. Fortov, L. M. Vasilyak, S. P. Vetchinin, et al., Dokl. Phys. 47, 21 (2002).

    Article  ADS  Google Scholar 

  10. S. N. Antipov, E. I. Asinovskii, A. V. Kirillin, S. A. Maiorov, V. V. Markovets, O. F. Petrov, and V. E. Fortov, J. Exp. Theor. Phys. 106, 830 (2008).

    Article  ADS  Google Scholar 

  11. J. Kubota, C. Kojima, W. Sekine, and O. Ishihara, J. Plasma Fusion Res. Ser. 8, 286 (2009).

    Google Scholar 

  12. S. N. Antipov, M. M. Vasil’ev, S. A. Maiorov, O. F. Petrov, and V. E. Fortov, J. Exp. Theor. Phys. 112, 482 (2011).

    Article  ADS  Google Scholar 

  13. O. Ishihara, Plasma Phys. Control. Fusion 54, 124020 (2012).

    Article  ADS  Google Scholar 

  14. M. Shindo, A. Samarian, and O. Ishihara, JPS Conf. Proc. 1, 015049 (2014).

    Google Scholar 

  15. M. M. Vasiliev, O. F. Petrov, and K. B. Statsenko, JETP Lett. 102, 771 (2015).

    Article  ADS  Google Scholar 

  16. O. F. Petrov, M. M. Vasiliev, O. S. Vaulina, et al., Europhys. Lett. 111, 45002 (2015).

    Article  ADS  Google Scholar 

  17. I. S. Samoilov, V. P. Baev, A. P. Timofeev, R. Kh. Amirov, A. V. Kirillin, V. S. Nikolaev and Z. V. Bedran, J. Exp. Theor. Phys. 124, 496 (2017).

    Article  ADS  Google Scholar 

  18. A. V. Kirillin and V. V. Markovets, Teplofiz. Vyz. Temp. 11, 706 (1973).

    Google Scholar 

  19. E. I. Asinovskii, A. V. Kirillin, and V. V. Markovets, High Temperature 13, 858 (1975).

    Google Scholar 

  20. E. I. Asinovskii, A. V. Kirillin, V. V. Markovets, and V. E. Fortov, Dokl. Phys. 46, 321 (2001).

    Article  ADS  Google Scholar 

  21. A. Zaitsev, F. Poncin-Epaillard, A. Lacoste, et al., Plasma Process. Polym. 13, 227 (2016).

    Article  Google Scholar 

  22. E. Kovacevic, J. Berndt, T. Strunskus, et al., J. Appl. Phys. 112, 013303 (2012).

    Article  ADS  Google Scholar 

  23. A. A. Arshinov and A. K. Musin, Sov. Phys. Dokl. 3, 588 (1958).

    ADS  Google Scholar 

  24. M. Mamunuru, R. le Picard, Y. Sakiyama, et al., Plasma Chem. Plasma Process. 37, 701 (2017).

    Article  Google Scholar 

  25. G. I. Sukhinin, A. V. Fedoseev, M. V. Salnikov, et al., Phys. Rev. E 95, 063207 (2017).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. E. Boltnev.

Additional information

Original Russian Text © R.E. Boltnev, M.M. Vasiliev, E.A. Kononov, O.F. Petrov, 2018, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 153, No. 4, pp. 671–676.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boltnev, R.E., Vasiliev, M.M., Kononov, E.A. et al. Self-Organization Phenomena in a Cryogenic Gas Discharge Plasma: Formation of a Nanoparticle Cloud and Dust–Acoustic Waves. J. Exp. Theor. Phys. 126, 561–565 (2018). https://doi.org/10.1134/S1063776118040027

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776118040027

Navigation