Skip to main content
Log in

Influence of Molecular Effects on the Emission of Sound in a Low-Velocity Impact of a Drop on Water Surface

  • Solids and Liquids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The dynamics of an impact pressure pulse and the evolution of the coalescence bridge between a drop and the surface of water are investigated in experiments on the impact of the drop on water surface in the range of low impact velocities U. Experimental sequences of radii r i of the bridge, which are approximated by a function of the form t1/2, are extrapolated to the instant of contact and are compared with radii r k of the outer contour of the cross section formed by the bottom part of the drop with the surface. The impact pressure pulse exhibits the critical dependence on ratio \({\varepsilon _{\text{i}}}(U) = {\dot r_i}/{\dot r_k}\) of the velocities of spreading. The value of ε = 1 determines the velocity threshold below (above) which the pressure is hydrodynamic (hydroacoustic) by nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Nystuen, E. Amitai, E. N. Anagnostou, et al., J. Acoust. Soc. Am. 123, 1952 (2008).

    Article  ADS  Google Scholar 

  2. J. E. Field, J.-J. Camus, M. Tinguely, et al., Wear 290–291, 154 (2012).

    Article  Google Scholar 

  3. J. E. Sprittles, Phys. Rev. Lett. 118, 114502 (2017).

    Article  ADS  Google Scholar 

  4. H. N. Oguz and A. Prosperetti, J. Fluid. Mech. 203, 149 (1989).

    Article  ADS  Google Scholar 

  5. R. Purvis and F. T. Smith, Phil. Trans. R. Soc. Am. 363, 1209 (2005).

    Article  ADS  Google Scholar 

  6. O. Engel, J. Appl. Phys. 38, 3935 (1967).

    Article  ADS  Google Scholar 

  7. M. Rein, Fluid Dyn. Res. 12, 61 (1993).

    Article  ADS  Google Scholar 

  8. H. Harlow and J. P. Shannon, J. Appl. Phys. 38, 3855 (1967).

    Article  ADS  Google Scholar 

  9. M. H. W. Hendrix, W. Bouwhuis, D. van der Meer, et al., J. Fluid Mech. 789, 708 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  10. B. Ray, G. Biswas, and A. Sharma, J. Fluid Mech. 768, 492 (2015).

    Article  ADS  Google Scholar 

  11. A. L. Yarin, Ann. Rev. Fluid Mech. 38, 159 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  12. G. J. Franz, J. Acoust. Soc. Am. 31, 1080 (1959).

    Article  ADS  Google Scholar 

  13. Y. P. Guo and J. E. Williams, J. Fluid Mech. 227, 345 (1991).

    Article  ADS  Google Scholar 

  14. M. S. Howe and N. A. Hagen, J. Sound Vibrat. 330, 625 (2011).

    Article  ADS  Google Scholar 

  15. P. Dergarabedian, NAVORD Report No. 3253 (CA, 1955), p.4.

  16. M. Lee, R. G. Longoria, and D. E. Wilson, J. Fluid Struct. 11, 819 (1997).

    Article  Google Scholar 

  17. Yu. D. Chashechkin and V. E. Prokhorov, Acoust. Phys. 63, 33 (2017).

    Article  ADS  Google Scholar 

  18. Ya. I. Frenkel’, Zh. Eksp. Teor. Fiz. 16, 29 (1945).

    Google Scholar 

  19. J. E. Sprittles and Y. D. Shikhmurzaev, Preprint OCCAM No. 12/107 (2012).

  20. J. Eggers, J. R. Lister, and H. A. Stone, J. Fluid Mech. 401, 293 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  21. S. T. Thoroddsen, K. Takehara, and T. G. Etoh, J. Fluid Mech. 527, 85 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  22. V. E. Prokhorov and Yu. D. Chashechkin, Fluid Dyn. 49, 515 (2014).

    Article  Google Scholar 

  23. L. V. Zhang, J. Toole, K. Fezzaa, et al., J. Fluid Mech. 703, 402 (2012).

    Article  ADS  Google Scholar 

  24. T. Tuan, H. de Maleprade, C. Sun, et al., J. Fluid Mech. 726, R3 (2013).

    Article  Google Scholar 

  25. Z. Mohamed-Kassim and E. K. Longmire, Phys. Fluids 15, 3263 (2003).

    Article  ADS  Google Scholar 

  26. V. E. Prokhorov and Yu. D. Chashechkin, Acoust. Phys. 57, 807 (2011).

    Article  ADS  Google Scholar 

  27. Y. K. Cai, Exp. Fluids 7, 388 (1989).

    Article  Google Scholar 

  28. M. Rein, J. Fluid Mech. 306, 145 (1996).

    Article  ADS  Google Scholar 

  29. V. E. Prokhorov and Yu. D. Chashechkin, Dokl. Phys. 57, 114 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Prokhorov.

Additional information

Original Russian Text © V.E. Prokhorov, 2018, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 153, No. 4, pp. 576–581.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prokhorov, V.E. Influence of Molecular Effects on the Emission of Sound in a Low-Velocity Impact of a Drop on Water Surface. J. Exp. Theor. Phys. 126, 479–484 (2018). https://doi.org/10.1134/S1063776118030184

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776118030184

Navigation