Simulations of the Stable Expansion of a Monoelement Three-Component Explosive-Emission Plasma

Statistical, Nonlinear, and Soft Matter Physics
  • 8 Downloads

Abstract

The results of numerical simulations of the stable expansion stage of a micro explosive plasma plume are presented. A three-liquid hydrodynamic model was used with corrections allowing its application to the consistent description of the transfer of particles in a monoelement plasma with ions with two different charges and of the electron transfer in a changing plasma–collector vacuum gap. The evolution of concentration profiles, the drift velocity, and electron and ion temperatures in plasma are analyzed depending on conditions of a collector. It is shown in the model that the velocity separation of ions with different charges occurs efficiently in the absence of an external electric field, whereas in a current-carrying plasma, the ions with different charges move with almost identical velocities.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Anders and S. Anders, J. Phys. D: Appl. Phys. 24, 1986 (1991).ADSCrossRefGoogle Scholar
  2. 2.
    D. L. Shmelev and S. A. Barengolts, IEEE Trans. Plasma Sci. 41, 1964 (2013).ADSCrossRefGoogle Scholar
  3. 3.
    E. V. Nefedtsev and A. V. Batrakov, J. Exp. Theor. Phys. 121, 706 (2015).ADSCrossRefGoogle Scholar
  4. 4.
    S. Anders and A. Anders, J. Phys. D: Appl. Phys. 21, 213 (1988).ADSCrossRefGoogle Scholar
  5. 5.
    A. Anders, Phys. Rev. E 55, 969 (1997).ADSCrossRefGoogle Scholar
  6. 6.
    B. Ya. Moizhes and V. A. Nemchinskii, Sov. Tech. Phys. 25, 43 (1980).Google Scholar
  7. 7.
    V. I. Krasov and V. L. Paperny, Plasma Phys. Rep. 43, 298 (2017).ADSCrossRefGoogle Scholar
  8. 8.
    G. Yu. Yushkov, A. Anders, E. M. Oks, and I. G. Brown, J. Appl. Phys. 88, 5618 (2000).ADSCrossRefGoogle Scholar
  9. 9.
    S. A. Popov, A. N. Panchenko, A. V. Batrakov, F. N. Ljubchenko, and V. V. Mataibaev, IEEE Trans. Plasma Sci. 39, 1412 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    S. I. Braginskii, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1965), Vol. 1, p.205.ADSGoogle Scholar
  11. 11.
    V. E. Golant, A. P. Zhilinskii, and I. E. Sakharov, Fundamentals of Plasma Physics (John Wiley & Sons, Australia, LTD, 1980).Google Scholar
  12. 12.
    H. Dreicer, Phys. Rev. 115, 238 (1959).ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    B. A. Trubnikov, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1965), Vol. 1, p.105.ADSGoogle Scholar
  14. 14.
    G. A. Mesyats and D. I. Proskurovsky, Pulsed Electrical Discharge in Vacuum (Springer-Verlag, Berlin, 1989).CrossRefGoogle Scholar
  15. 15.
    I. Langmuir and K. B. Blodgett, Phys. Rev. Lett. 24, 49 (1924).ADSGoogle Scholar
  16. 16.
    A. V. Gurevich and A. P. Meshcherkin, Sov. Phys. JETP 53, 937 (1981).Google Scholar
  17. 17.
    A. V. Gurevich and A. P. Meshcherkin, Sov. J. Plasma Phys. 9, 556 (1983).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.High-Current Electronics Institute, Siberian BranchRussian Academy of SciencesTomskRussia
  2. 2.Tomsk State UniversityTomskRussia

Personalised recommendations