Advertisement

Helical Quantum States in a Strongly Frustrated Two-Dimensional Magnet

  • A. V. Mikheenkov
  • V. E. Valiulin
  • A. V. Shvartsberg
  • A. F. Barabanov
Order, Disorder, and Phase Transition in Condensed System
  • 33 Downloads

Abstract

Thermodynamic properties of the J1J2J3 quantum Heisenberg model are investigated on a square lattice with spin S = 1/2. The calculation of spin–spin correlators, spin excitation spectra, susceptibility, and heat capacity within a spherically symmetric approach shows that the third exchange J3 may qualitatively change the properties of the system. Along with standard short-range order (antiferromagnetic, ferromagnetic, and stripe) structures, various quantum helices arise. In particular, these structures may be isotropic with a local minimum of the spectrum along a circle in the Brillouin zone. The character of these states represents both ferromagnetic and antiferromagnetic “twisted” quantum spin ordering. Moreover, a range of parameters is determined in which heat capacity exhibits two-peak temperature behavior.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. M. Plakida, Springer Ser. Solid-State Sci. 166, 377 (2010).CrossRefGoogle Scholar
  2. 2.
    J. M. Tranquada, in Handbook of High-Temperature Superconductivity, Ed. by J. R. Schrieffer and J. S. Brooks (Springer, New York, 2007), p. 257.Google Scholar
  3. 3.
    R. Melzi, P. Carretta, A. Lascialfari, et al., Phys. Rev. Lett. 85, 1318 (2000).ADSCrossRefGoogle Scholar
  4. 4.
    R. Melzi, S. Aldrovandi, F. Tedoldi, et al., Phys. Rev. B 64, 024409 (2001).ADSCrossRefGoogle Scholar
  5. 5.
    H. Rosner, R. R. P. Singh, W. H. Zheng, et al., Phys. Rev. B 67, 014416 (2003).ADSCrossRefGoogle Scholar
  6. 6.
    S. Vasala, M. Avdeev, S. Danilkin, et al., J. Phys.: Condens. Matter 26, 496001 (2014).Google Scholar
  7. 7.
    H. Kageyama, T. Kitano, N. Oba, et al., J. Phys. Soc. Jpn. 74, 1702 (2005).ADSCrossRefGoogle Scholar
  8. 8.
    E. E. Kaul, H. Rosner, N. Shannon, et al., J. Magn. Magn. Mater. 272–276, 922 (2004).CrossRefGoogle Scholar
  9. 9.
    M. Skoulatos, J. Goff, N. Shannon, et al., J. Magn. Magn. Mater. 310, 1257 (2007).ADSCrossRefGoogle Scholar
  10. 10.
    P. Carretta, M. Filibian, R. Nath, et al., Phys. Rev. B 79, 224432 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    M. Skoulatos, J. P. Goff, C. Geibel, et al., Europhys. Lett. 88, 57005 (2009).ADSCrossRefGoogle Scholar
  12. 12.
    A. A. Tsirlin and H. Rosner, Phys. Rev. B 79, 214417 (2009).ADSCrossRefGoogle Scholar
  13. 13.
    A. A. Tsirlin, B. Schmidt, Y. Skourski, et al., Phys. Rev. B 80, 132407 (2009).ADSCrossRefGoogle Scholar
  14. 14.
    L. Bossoni, P. Carretta, R. Nath, et al., Phys. Rev. B 83, 014412 (2010).ADSCrossRefGoogle Scholar
  15. 15.
    R. Nath, A. A. Tsirlin, H. Rosner, et al., Phys. Rev. B 78, 064422 (2008).ADSCrossRefGoogle Scholar
  16. 16.
    S. Feldkemper, W. Weber, J. Schulenburg, et al., Phys. Rev. B 52, 313 (1995).ADSCrossRefGoogle Scholar
  17. 17.
    S. Feldkemper and W. Weber, Phys. Rev. B 57, 7755 (1998).ADSCrossRefGoogle Scholar
  18. 18.
    H. Manaka, T. Koide, T. Shidara, et al., Phys. Rev. B 68, 184412 (2003).ADSCrossRefGoogle Scholar
  19. 19.
    D. Kasinathan, A. B. Kyker, and D. J. Singh, Phys. Rev. B 73, 214420 (2006).ADSCrossRefGoogle Scholar
  20. 20.
    A. A. Tsirlin, O. Janson, S. Lebernegg, et al., Phys. Rev. B 87, 064404 (2013).ADSCrossRefGoogle Scholar
  21. 21.
    P. Carretta, N. Papinutto, C. B. Azzoni, et al., Phys. Rev. B 66, 094420 (2002).ADSCrossRefGoogle Scholar
  22. 22.
    P. Carretta, R. Melzi, N. Papinutto, et al., Phys. Rev. Lett. 88, 047601 (2002).ADSCrossRefGoogle Scholar
  23. 23.
    L. Bossoni, P. Carretta, R. Nath, et al., Phys. Rev. B 83, 014412 (2011).ADSCrossRefGoogle Scholar
  24. 24.
    S. Sachdev, Quantum Phase Transitions of Antiferromagnets and the Cuprate Superconductors (Springer, Berlin, 2012).CrossRefGoogle Scholar
  25. 25.
    I. Georgescu, S. Ashhab, and F. Nori, Rev. Mod. Phys. 86, 153 (2014).ADSCrossRefGoogle Scholar
  26. 26.
    Z.-X. Chen, Z.-W. Zhou, X. Zhou, et al., Phys. Rev. A 81, 022303 (2010).ADSCrossRefGoogle Scholar
  27. 27.
    X.-S. Ma, B. Dakić, S. Kropatschek, et al., Sci. Rep. 4, 03583 (2014).CrossRefGoogle Scholar
  28. 28.
    S. Murmann, F. Deuretzbacher, G. Zörn, et al., Phys. Rev. Lett. 115, 215301 (2015).ADSCrossRefGoogle Scholar
  29. 29.
    A. G. Volosniev, D. Petrosyan, M. Valiente, et al., Phys. Rev. A 91, 023620 (2015).ADSCrossRefGoogle Scholar
  30. 30.
    Y. Tsujimoto, Y. Baba, N. Oba, et al., J. Phys. Soc. Jpn. 76, 063711 (2007).ADSCrossRefGoogle Scholar
  31. 31.
    Y. Tsujimoto, H. Kageyama, Y. Baba, et al., Phys. Rev. B 78, 214410 (2008).ADSCrossRefGoogle Scholar
  32. 32.
    S. M. Yusuf, A. K. Bera, C. Ritter, et al., Phys. Rev. B 84, 064407 (2011).ADSCrossRefGoogle Scholar
  33. 33.
    C. Ritter, S. M. Yusuf, A. K. Bera, et al., Phys. Rev. B 88, 104401 (2013).ADSCrossRefGoogle Scholar
  34. 34.
    J. M. Luttinger and L. Tisza, Phys. Rev. 70, 954 (1946).ADSCrossRefGoogle Scholar
  35. 35.
    G. Misguich and C. Lhuillier, in Frustrated Spin Systems (World Scientific, Singapore, 2005), p. 229.CrossRefGoogle Scholar
  36. 36.
    A. F. Barabanov, A. V. Mikheenkov, and A. V. Shvartsberg, Theor. Math. Phys. 168, 1192 (2011).CrossRefGoogle Scholar
  37. 37.
    P. Sindzingre, L. Seabra, N. Shannon, et al., J. Phys.: Conf. Ser. 145, 012048 (2009).Google Scholar
  38. 38.
    P. Sindzingre, N. Shannon, and T. Momoi, J. Phys.: Conf. Ser. 200, 022058 (2010).Google Scholar
  39. 39.
    N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).ADSCrossRefGoogle Scholar
  40. 40.
    J. Kondo and K. Yamaji, Progr. Theor. Phys. 47, 807 (1972).ADSCrossRefGoogle Scholar
  41. 41.
    H. Shimahara and S. Takada, J. Phys. Soc. Jpn. 60, 2394 (1991).ADSCrossRefGoogle Scholar
  42. 42.
    A. F. Barabanov, L. A. Maksimov, and A. V. Mikheyenkov, in Spectroscopy of High-Tc Superconductors, Ed. by N. M. Plakida (Taylor and Francis, London, 2003), p. 1.Google Scholar
  43. 43.
    I. Junger, D. Ihle, L. Bogacz, et al., Phys. Rev. B 77, 174411 (2008).ADSCrossRefGoogle Scholar
  44. 44.
    M. Härtel, J. Richter, D. Ihle, et al., Phys. Rev. B 84, 104411 (2011).ADSCrossRefGoogle Scholar
  45. 45.
    M. Härtel, J. Richter, O. Götze, et al., Phys. Rev. B 87, 054412 (2013).ADSCrossRefGoogle Scholar
  46. 46.
    A. F. Barabanov, A. V. Mikheenkov, and A. M. Belemuk, JETP Lett. 75, 107 (2002).ADSCrossRefGoogle Scholar
  47. 47.
    M. V. Eremin, I. M. Shigapov, and I. M. Eremin, Eur. Phys. J. B 85, 131 (2012).ADSCrossRefGoogle Scholar
  48. 48.
    M. Yu. Kagan, K. I. Kugel, A. V. Mikheyenkov, and A. F. Barabanov, JETP Lett. 100, 187 (2014).CrossRefGoogle Scholar
  49. 49.
    A. A. Vladimirov, D. Ihle, and N. M. Plakida, Phys. Rev. B 80, 104425 (2009).ADSCrossRefGoogle Scholar
  50. 50.
    A. A. Vladimirov, D. Ihle, and N. M. Plakida, Phys. Rev. B 83, 024411 (2011).ADSCrossRefGoogle Scholar
  51. 51.
    P. Rubin, A. Sherman, and M. Schreiber, Phys. Lett. A 374, 3567 (2010).ADSCrossRefGoogle Scholar
  52. 52.
    P. Rubin, A. Sherman, and M. Schreiber, Phys. Lett. A 376, 1062 (2012).ADSCrossRefGoogle Scholar
  53. 53.
    A. V. Mikheyenkov, A. F. Barabanov, and A. V. Shvartsberg, Solid State Commun. 152, 831 (2012).ADSCrossRefGoogle Scholar
  54. 54.
    A. V. Mikheyenkov, A. V. Shvartsberg, V. E. Valiulin, et al., J. Magn. Magn. Mater. 419, 131 (2016).ADSCrossRefGoogle Scholar
  55. 55.
    L. Seabra, P. Sindzingre, T. Momoi, et al., Phys. Rev. B 93, 085132 (2016).ADSCrossRefGoogle Scholar
  56. 56.
    M. Härtel, J. Richter, D. Ihle, et al., Phys. Rev. B 81, 174421 (2010).ADSCrossRefGoogle Scholar
  57. 57.
    G. Mert, J. Magn. Magn. Mater. 374, 258 (2015).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. V. Mikheenkov
    • 1
    • 2
    • 3
  • V. E. Valiulin
    • 1
    • 3
  • A. V. Shvartsberg
    • 1
  • A. F. Barabanov
    • 2
  1. 1.Moscow Institute of Physics and TechnologyDolgoprudnyi, Moscow oblastRussia
  2. 2.Vereshchagin Institute for High-Pressure PhysicsRussian Academy of SciencesTroitsk, Moscow oblastRussia
  3. 3.National Research Center “Kurchatov Institute,”MoscowRussia

Personalised recommendations