Models of the Dynamics of Spatially Separated Broadband Electromagnetic Fields Interacting with Resonant Atoms
- 2 Downloads
Abstract
The Markov model of spontaneous emission of an atom localized in a spatial region with a broadband electromagnetic field with zero photon density is considered in the conditions of coupling of the electromagnetic field with the broadband field of a neighboring space. The evolution operator of the system and the kinetic equation for the atom are obtained. It is shown that the field coupling constant affects the rate of spontaneous emission of the atom, but is not manifested in the atomic frequency shift. The analytic expression for the radiative decay constant for the atom is found to be analogous in a certain sense to the expression for the decay constant for a singly excited localized ensemble of identical atoms in the conditions when the effect of stabilization of its excited state by the Stark interaction with the vacuum broadband electromagnetic field is manifested. The model is formulated based on quantum stochastic differential equations of the non- Wiener type and the generalized algebra of the Ito differential of quantum random processes.
Preview
Unable to display preview. Download preview PDF.
References
- 1.R. Zwanzig, J. Chem. Phys. 33, 1338 (1960).ADSMathSciNetCrossRefGoogle Scholar
- 2.R. Zwanzig, Phys. Rev. 129, 486 (1963).ADSMathSciNetCrossRefGoogle Scholar
- 3.N. N. Bogolyubov, Selected Works (Nauk. Dumka, Kiev, 1969–1971) [in Russian].MATHGoogle Scholar
- 4.M. Bonitz, Quantum Kinetic Theory (B. G. Teubner, Stuttgart, 1989).MATHGoogle Scholar
- 5.D. V. Kuznetsov, Vl. K. Roerikh, and M. G. Gladush, J. Exp. Theor. Phys. 113, 647 (2011).ADSCrossRefGoogle Scholar
- 6.O. V. Konstantinov and V. I. Perel’, Sov. Phys. JETP 12, 142 (1960).Google Scholar
- 7.M. I. D’yakonov and V. I. Perel’, Sov. Phys. JETP 20, 997 (1964).Google Scholar
- 8.M. I. D’yakonov and V. I. Perel’, Sov. Phys. JETP 21, 227 (1965).ADSGoogle Scholar
- 9.L. V. Keldysh, Sov. Phys. JETP 20, 1018 (1964).Google Scholar
- 10.B. R. Mollow, Phys. Rev. A 12, 1919 (1975).ADSCrossRefGoogle Scholar
- 11.W. Konyk and J. Gea-Banacloche, Phys. Rev. A 93, 063807 (2016).ADSCrossRefGoogle Scholar
- 12.A. Nysteen et al., New J. Phys. 17, 023030 (2015).ADSCrossRefGoogle Scholar
- 13.Z. Liao, X. Zeng, H. Nha, and M. Zubairy, Phys. Scr. 91, 063004 (2016).ADSCrossRefGoogle Scholar
- 14.S. R. White, Phys. Rev. Lett. 69, 2863 (1992).ADSCrossRefGoogle Scholar
- 15.U. Schollwock, Rev. Mod. Phys. 77, 259 (2005).ADSMathSciNetCrossRefGoogle Scholar
- 16.F. Verstraete and J. I. Cirac, Phys. Rev. Lett. 104, 190405 (2010).ADSMathSciNetCrossRefGoogle Scholar
- 17.H. Pichler and P. Zoller, Phys. Rev. Lett. 116, 093601 (2016).ADSCrossRefGoogle Scholar
- 18.A. M. Basharov, Photonics. Method of Unitary Transformation in Nonlinear Optics (Mosk. Inzh. Fiz. Inst., Moscow, 1990) [in Russian].Google Scholar
- 19.A. I. Maimistov and A. M. Basharov, Nonlinear Optical Waves (Kluwer Academic, Dordrecht, 1999).CrossRefMATHGoogle Scholar
- 20.A. M. Basharov, in Coherent Optics and Optical Spectroscopy, Proceedings of the 17th All-Russia Youth School, Ed. by M. Kh. Salakhov (Kazan. Gos. Univ., Kazan’, 2013), p. 19.Google Scholar
- 21.C. W. Gardiner and P. Zoller, Quantum Noise (Springer, Berlin, 2000, 2004).CrossRefMATHGoogle Scholar
- 22.H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford Univ. Press, Oxford, 2003).MATHGoogle Scholar
- 23.C. W. Gardiner and M. J. Collet, Phys. Rev. A 31, 3761 (1985).ADSMathSciNetCrossRefGoogle Scholar
- 24.A. M. Basharov, Phys. Rev. A 84, 013801 (2011).ADSCrossRefGoogle Scholar
- 25.A. M. Basharov, JETP Lett. 94, 27 (2011).ADSCrossRefGoogle Scholar
- 26.A. M. Basharov, J. Exp. Theor. Phys. 113, 376 (2011).ADSCrossRefGoogle Scholar
- 27.A. M. Basharov, J. Exp. Theor. Phys. 115, 371 (2012).ADSCrossRefGoogle Scholar
- 28.A. M. Basharov, Opt. Spectrosc. 116, 495 (2014).ADSCrossRefGoogle Scholar
- 29.R. L. Hudson and K. R. Parthasarathy, Commun. Math. Phys. 93, 301 (1984).ADSCrossRefGoogle Scholar
- 30.K. Blum, Density Matrix Theory and Applications (Plenum, New York, 1996; Mir, Moscow, 1983).CrossRefMATHGoogle Scholar
- 31.R. Dicke, Phys. Rev. 93, 99 (1954).ADSCrossRefGoogle Scholar
- 32.P. G. Brooke, K.-P. Marzlin, J. D. Cresser, and B. C. Sanders, Phys. Rev. A 77, 033844 (2008).ADSCrossRefGoogle Scholar
- 33.J. T. Manassah, Laser Phys. 20, 1397 (2010).ADSCrossRefGoogle Scholar
- 34.S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, Nature (London, U.K.) 466, 735 (2010).ADSCrossRefGoogle Scholar
- 35.E. T. Jaynes and F. W. Cummings, Proc. IEEE 51, 89 (1963).CrossRefGoogle Scholar
- 36.M. Tavis and F. W. Cummings, Phys. Rev. 170, 379 (1968).ADSCrossRefGoogle Scholar
- 37.A. M. Basharov, Phys. Lett. A 376, 1881 (2012).ADSCrossRefGoogle Scholar
- 38.V. N. Gorbachev and A. I. Zhiliba, J. Phys. A 33, 3771 (2000).ADSMathSciNetCrossRefGoogle Scholar
- 39.V. Weisskopf and E. Wigner, in Collected Works of E. P. Wigner, The Scientific Papers (Springer, Berlin, 1997), Vol. AIII, pp. 30, 50.Google Scholar
- 40.H. Haken, Z. Phys. 181, 96 (1964).ADSCrossRefGoogle Scholar
- 41.M. Lax, Phys. Rev. 145, 110 (1966).ADSCrossRefGoogle Scholar
- 42.J. P. Gordon, L. R. Walker, and W. Louisell, Phys. Rev. 130, 806 (1963).ADSMathSciNetCrossRefGoogle Scholar
- 43.C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-Photon Interactions (Wiley, New York, 2004).Google Scholar
- 44.C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Photons and Atoms. Introduction to Quantum Electrodynamics (Wiley, Chichester, 1997).Google Scholar
- 45.B. Q. Baragiola et al., Phys. Rev. A 86, 013811 (2012).ADSCrossRefGoogle Scholar
- 46.K. A. Fischer et al., arXiv: 1710.02875v3 [quant-ph] (2017).Google Scholar
- 47.G. Jona-Lasinio, Phys. Rep. 352, 439 (2001).ADSMathSciNetCrossRefGoogle Scholar