Advertisement

Subterahertz Longitudinal Phonon Modes Propagating in a Lipid Bilayer Immersed in an Aqueous Medium

Statistical, Nonlinear, and Soft Matter Physics
  • 10 Downloads

Abstract

The properties of subterahertz longitudinal acoustic phonon modes in the hydrophobic region of a lipid bilayer immersed in a compressible viscous aqueous medium are investigated theoretically. An approximate expression is obtained for the Mandelstam–Brillouin components of the dynamic structure factor of a bilayer. The analysis is based on a generalized hydrodynamic model of the “two-dimensional lipid bilayer + three-dimensional fluid medium” system, as well as on known sharp estimates for the frequencies and lifetimes of long-wavelength longitudinal acoustic phonons in a free hydrated lipid bilayer and in water, obtained from inelastic X-ray scattering experiments and molecular dynamics simulations. It is shown that, for characteristic values of the parameters of the membrane system, subterahertz longitudinal phonon-like excitations in the hydrophobic part of the bilayer are underdamped. In this case, the contribution of the viscous flow of the aqueous medium to the damping of a longitudinal membrane mode is small compared with the contribution of the lipid bilayer. Quantitative estimates of the damping ratio agree well with the experimental results for the vibration mode of the enzyme lysozyme in aqueous solution [1]. It is also shown that a coupling between longitudinal phonon modes of the bilayer and relaxation processes in its fluid environment gives rise to an additional peak in the scattering spectrum, which corresponds to a non-propagating mode.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. A. Turton, H. M. Senn, T. Harwood, et al., Nat. Commun. 5, 3999 (2014).CrossRefGoogle Scholar
  2. 2.
    M. Gonzalez-Jimenez, G. Ramakrishnan, T. Harwood, et al., Nat. Commun. 7, 11799 (2016).ADSCrossRefGoogle Scholar
  3. 3.
    M. Zhernenkov, D. Bolmatov, D. Soloviov, et al., Nat. Commun. 7, 11575 (2016).ADSCrossRefGoogle Scholar
  4. 4.
    E. G. Brandt and O. Edholm, Biophys. J. 96, 1828 (2009).ADSCrossRefGoogle Scholar
  5. 5.
    G. Monaco, A. Cunsolo, G. Ruocco, and F. Sette, Phys. Rev. E 60, 5505 (1999).ADSCrossRefGoogle Scholar
  6. 6.
    V. E. Zakhvataev, Biophysics 62, 396 (2017).CrossRefGoogle Scholar
  7. 7.
    C. Aponte-Santamaría, J. Brunken, and F. Grater, J. Am. Chem. Soc. 139, 13588 (2017).CrossRefGoogle Scholar
  8. 8.
    R. K. Adair, Biophys. 82, 1147 (2002).Google Scholar
  9. 9.
    R. K. Adair, Bioelectromagn. 24, 39 (2003).CrossRefGoogle Scholar
  10. 10.
    P. Stevenson and A. Tokmakoff, J. Am. Chem. Soc. 139, 4743 (2017).CrossRefGoogle Scholar
  11. 11.
    T. M. Weiss, P. J. Chen, H. Sinn, et al., Biophys. J. 84, 3767 (2003).CrossRefGoogle Scholar
  12. 12.
    V. E. Zakhvataev, J. Exp. Theor. Phys. 125, 167 (2017).ADSCrossRefGoogle Scholar
  13. 13.
    S. H. Chen, C. Y. Liao, H. W. Huang, et al., Phys. Rev. Lett. 86, 740 (2001).ADSCrossRefGoogle Scholar
  14. 14.
    V. C. Nibali, G. D’Angelo, and M. Tarek, Phys. Rev. E 89, 050301 (2014).CrossRefGoogle Scholar
  15. 15.
    O. Kel, A. Tamimi, M. C. Thielges, and M. D. Fayer, J. Am. Chem. Soc. 135, 11063 (2013).CrossRefGoogle Scholar
  16. 16.
    P. J. Chen, Y. Liu, T. M. Weiss, et al., Biophys. Chem. 105, 721 (2003).CrossRefGoogle Scholar
  17. 17.
    M. C. Rheinstädter, C. Ollinger, G. Fragneto, et al., Phys. Rev. Lett. 93, 108107 (2004).ADSCrossRefGoogle Scholar
  18. 18.
    J. S. Hub, T. Salditt, M. C. Rheinstädter, and B. L. de Groot, Biophys. J. 93, 3156 (2007).ADSCrossRefGoogle Scholar
  19. 19.
    K. Amann-Winkel, M. C. Bellissent-Funel, L. E. Bove, et al., Chem. Rev. 116, 7570 (2016).CrossRefGoogle Scholar
  20. 20.
    N. K. Ailawadi, A. Rahman, and R. Zwanzig, Phys. Rev. A 4, 1616 (1971).ADSCrossRefGoogle Scholar
  21. 21.
    R. D. Mountain, Adv. Molec. Relax. Proc. 9, 225 (1976).CrossRefGoogle Scholar
  22. 22.
    L. van Hove, Phys. Rev. 95, 249 (1954).ADSCrossRefGoogle Scholar
  23. 23.
    U. Seifert and S. A. Langer, Europhys. Lett. 23, S71 (1993).ADSCrossRefGoogle Scholar
  24. 24.
    A. F. Bitbol, D. Constantin, and J. B. Fournier, PLoS One 7, e48306 (2012).ADSCrossRefGoogle Scholar
  25. 25.
    J. M. Ortiz de Záate and J. V. Sengers, Hydrodynamic Fluctuations in Fluids and Fluid Mixtures (Elsevier Scientific, Amsterdam, 2006).Google Scholar
  26. 26.
    F. Brochard and J. F. Lennon, J. de Phys. 36, 1035 (1975).CrossRefGoogle Scholar
  27. 27.
    E. I. Kats and V. V. Lebedev, Phys. Rev. E 49, 3003 (1994).ADSCrossRefGoogle Scholar
  28. 28.
    M. Tarek, D. J. Tobias, S. H. Chen, and M. L. Klein, Phys. Rev. Lett. 87, 238101 (2001).ADSCrossRefGoogle Scholar
  29. 29.
    E. I. Kats, V. V. Lebedev, and S. V. Malinin, J. Exp. Theor. Phys. 86, 1149 (1998).ADSCrossRefGoogle Scholar
  30. 30.
    S. V. Baoukina and S. I. Mukhin, J. Exp. Theor. Phys. 99, 875 (2004).ADSCrossRefGoogle Scholar
  31. 31.
    E. G. Brandt, A. R. Braun, J. N. Sachs, et al., Biophys. J. 100, 2104 (2011).ADSCrossRefGoogle Scholar
  32. 32.
    M. C. Watson, Y. Peng, Y. Zheng, and F. L. H. Brown, J. Chem. Phys. 135, 194701 (2011).ADSCrossRefGoogle Scholar
  33. 33.
    R. J. Bingham, S. W. Smye, and P. D. Olmsted, Europhys. Lett. 111, 18004 (2015).ADSCrossRefGoogle Scholar
  34. 34.
    E. I. Kats and V. V. Lebedev, Sov. Phys. JETP 67, 940 (1988).Google Scholar
  35. 35.
    T. Heimburg, Biochim. Biophys. Acta 1415, 147 (1998).CrossRefGoogle Scholar
  36. 36.
    I. P. Omelyan, I. M. Mryglod, and M. V. Tokarchuk, Condens. Matter Phys. 8, 25 (2005).CrossRefGoogle Scholar
  37. 37.
    U. Bafile, E. Guarini, and F. Barocchi, Phys. Rev. E 73, 061203 (2006).ADSCrossRefGoogle Scholar
  38. 38.
    L. Saviot, C. H. Netting, and D. B. Murray, J. Phys. Chem. B 111, 7457 (2007).CrossRefGoogle Scholar
  39. 39.
    V. E. Zakhvataev, Biol. Membrany 35 (3) (2018).Google Scholar
  40. 40.
    R. D. Mountain, J. Res. Natl. Bur. Standards A: Phys. Chem. 70, 207 (1966).CrossRefGoogle Scholar
  41. 41.
    N. D. Devyatkov, M. B. Golant, and O. V. Betskii, Millimeter Waves and Their Role in Vital Processes (Radio Svyaz’, Moscow, 1991) [in Russian].Google Scholar
  42. 42.
    H. Fröhlich, Int. J. Quantum Chem. 2, 641 (1968).ADSCrossRefGoogle Scholar
  43. 43.
    T. W. Allen, O. S. Andersen, and B. J. Roux, Gen. Physiol. 124, 251 (2004).CrossRefGoogle Scholar
  44. 44.
    R. Phillips, T. Ursell, P. Wiggins, and P. Sens, Nature (London, U.K.) 459, 379 (2009).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Federal Research Center “Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences,”KrasnoyarskRussia
  2. 2.Siberian Federal UniversityKrasnoyarskRussia

Personalised recommendations