Advertisement

Radiation of Gas Layer over Hot Surface

  • B. M. Smirnov
Atoms, Molecules, Optics

Abstract

A method is presented for evaluation the radiation flux produced by a gas layer near a heated surface, where the gas temperature depends on a distance from the surface. This method refers to small temperature gradients and operates with an effective radiation temperature for each frequency, as well as with the width of the gas absorption band. These parameters are determined by the absorption spectrum of atoms or gas molecules, and also by the shape of the spectral line for the radiative transition between certain states of atomic particles of a gas. The possibilities of this method are demonstrated by examples of emission of photons from the solar photosphere, as well as emission of CO2 molecules in the atmospheres of the Earth and Venus.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. B. J. Fourier, Ann. Chem. Phys. 27, 136 (1824).Google Scholar
  2. 2.
    J. B. J. Fourier, Mem. Acad. R. Sci. 7, 569 (1827).Google Scholar
  3. 3.
    A. Beer, Ann. Phys. Chem. 86, 78 (1852).ADSCrossRefGoogle Scholar
  4. 4.
    J. H. Lambert, Photometry, or, on the Measure and Gradations of Light, Colors, and Shade (Eberhardt Klett, Augsburg, 1760).Google Scholar
  5. 5.
    L. M. Biberman, Zh. Eksp. Teor. Fiz. 17, 416 (1947).Google Scholar
  6. 6.
    T. Holstein, Phys. Rev. 72, 1212 (1947).ADSCrossRefGoogle Scholar
  7. 7.
    Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic, New York, 1966).Google Scholar
  8. 8.
    B. M. Smirnov, Physics of Weakly Ionized Gas (Moscow, Nauka 1972) [in Russian].Google Scholar
  9. 9.
    F. Reif, Statistical and Thermal Physics (McGraw-Hill, Boston, 1965).Google Scholar
  10. 10.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Pergamon, Oxford, 1980; Nauka, Moscow, 1995).Google Scholar
  11. 11.
    H. J. Bauer and P. Schotter, J. Chem. Phys. 51, 3261 (1969).ADSCrossRefGoogle Scholar
  12. 12.
    B. M. Smirnov, Physics of Weakly Ionized Gas (Nauka, Moscow, 1979) [in Russian].Google Scholar
  13. 13.
    B. M. Smirnov, Physics of Weakly Ionized Gases (Mir, Moscow, 1980; Nauka, Moscow, 1979).Google Scholar
  14. 14.
    W. Wien, Wied. Ann. Phys. Chem. 58, 662 (1896).ADSCrossRefGoogle Scholar
  15. 15.
    B. M. Smirnov, Fundamentals of Ionized Gases (Weinheim, Wiley, 2012), p.173.Google Scholar
  16. 16.
  17. 17.
  18. 18.
  19. 19.
    M. N. Saha, Proc. R. Soc. A 99, 135 (1921).ADSCrossRefGoogle Scholar
  20. 20.
    D. J. Mullan, Physics of the Sun (CRC, Boca Raton, FL, 2009).CrossRefGoogle Scholar
  21. 21.
    B. M. Smirnov, Negative Ions (McGraw-Hill, New York, 1982).Google Scholar
  22. 22.
    S. J. Smith and D. S. Burch, Phys. Rev. 116, 1125 (1959).ADSCrossRefGoogle Scholar
  23. 23.
    D. Feldman, Zs. Naturforsch. 25, 621 (1970).ADSGoogle Scholar
  24. 24.
  25. 25.
  26. 26.
    V. I. Moroz et al., Adv. Space Res. 5, 197 (1985).ADSCrossRefGoogle Scholar
  27. 27.
    M. G. Tomasko et al., J. Geophys. Res. 85, 8187 (1980).ADSCrossRefGoogle Scholar
  28. 28.
  29. 29.
    J. T. Schofield and F. W. Taylor, Icarus 52, 245 (1982).ADSCrossRefGoogle Scholar
  30. 30.
    L. V. Zasova et al., Planet Space Sci. 55, 1712 (2007).ADSCrossRefGoogle Scholar
  31. 31.
    G. Herzberg, Molecular Spectra and Molecular Structure (Van Nostrand Reinhold, Princeton, 1945).Google Scholar
  32. 32.
    M. A. El’yashevich, Molecular Spectroscopy (Moscow, Fizmatgiz, 1963) [in Russian].Google Scholar
  33. 33.
    H. C. Allen and P. C. Cross, Molecular Vibrators; The Theory and Interpretation of High Resolution Infra-Red Spectra (Wiley, New York, 1963).zbMATHGoogle Scholar
  34. 34.
    G. Herzberg, Molecular Spectra and Molecular Structure: Electronic Spectra and Electronic Structure of Polyatomic Molecules (Van Nostrand, New York, 1966).Google Scholar
  35. 35.
    C. N. Banwell and E. M. McCash, Fundamentals of Molecular Spectroscopy (McGraw-Hill, London, 1994).Google Scholar
  36. 36.
  37. 37.
    L. S. Rothman and W. S. Benedict, Appl. Opt. 17, 2605 (1978).ADSCrossRefGoogle Scholar
  38. 38.
    A. A. Radzig and B. M. Smirnov, Reference Data on Atoms, Molecules and Ions (Springer, Berlin, 1985).CrossRefGoogle Scholar
  39. 39.
    I. I. Sobelman, Atomic Spectra and Radiative Transitions (Springer, Berlin, 1979)CrossRefGoogle Scholar
  40. 40.
    V. P. Krainov, H. R. Reiss, and B. M. Smirnov, Radiative Processes in Atomic Physics (Wiley, New York, 1997).CrossRefGoogle Scholar
  41. 41.
    L. D. Kaplan and D. F. Eggers, J. Chem. Phys. 25, 876 (1956).ADSCrossRefGoogle Scholar
  42. 42.
    J. E. Lowder, J. Quant. Spectrosc. Radiat. Transfer 11, 1647 (1971).ADSCrossRefGoogle Scholar
  43. 43.
    P. Varanasi, J. Quant. Spectrosc. Radiat. Transfer 11, 1711 (1971).ADSCrossRefGoogle Scholar
  44. 44.
    A. Levy, E. Piollet-Mariel, and C. Boilet, J. Quant. Spectrosc. Radiat. Transfer 13, 673 (1973).ADSCrossRefGoogle Scholar
  45. 45.
    W. M. Elsasser, Phys. Rev. 54, 126 (1938).ADSCrossRefGoogle Scholar
  46. 46.
    E. T. Whittaker and G. N. Watson, Modern Analysis (Cambridge Univ. Press, London, 1940).zbMATHGoogle Scholar
  47. 47.
    B. M. Smirnov and G. V. Schlyapnikov, Sov. Phys. Usp. 23, 179 (1980).ADSCrossRefGoogle Scholar
  48. 48.
    B. M. Smirnov, Plasma Processes and Plasma Kinetics (Wiley, Weinheim, 2007).CrossRefGoogle Scholar
  49. 49.
    M. L. Salby, Physics of the Atmosphere and Climate (Cambridge Univ. Press, Cambridge, 2012).Google Scholar
  50. 50.
  51. 51.
    U. S. Standard Atmosphere (U. S. Government Printing Office, Washington, 1976).Google Scholar
  52. 52.
    B. M. Smirnov, Eur. Phys. Lett. 114, 24005 (2016).ADSCrossRefGoogle Scholar
  53. 53.
    B. M. Smirnov, Microphysics of Atmospheric Phenomena, Springer Atmospheric Series (Springer, Switzerland, 2017)CrossRefGoogle Scholar
  54. 54.
  55. 55.

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia

Personalised recommendations