Skip to main content
Log in

Method for Describing the Angular Distribution of Optical Radiation Scattered by a Monolayer of Ordered Spherical Particles (Normal Illumination)

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We have developed a method for describing the angular distribution of intensity of radiation scattered by a monolayer of homogeneous spatially ordered monodisperse spherical particles normally illuminated by a plane circularly polarized electromagnetic wave. The method is based on the quasicrystalline approximation (QCA) of the theory of multiple scattering of waves (TMSW) using the multipole expansion of fields and the tensor Green function in vectorial spherical wavefunctions. The method is applied for analyzing the characteristics of radiation scattered by a partially ordered monolayer and a monolayer with a nonideal lattice. The results of calculations are compared with the available experimental data on the position of the first-order diffraction peak on the angular and spectral dependences of the intensity of radiation scattered by a closely packed monolayer with a nonideal triangular lattice of SiO2 particles. Good conformity of the results has been established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. Alfrey, E. B. Bradford, J. W. Vanderhof, et al., J. Opt. Soc. Am. 44, 603 (1954).

    Article  ADS  Google Scholar 

  2. I. M. Krieger and F. M. O’Neill, J. Am. Chem. Soc. 90, 3114 (1968).

    Article  Google Scholar 

  3. P. A. Hiltner and I. M. Krieger, J. Phys. Chem. 73, 2386 (1969).

    Article  Google Scholar 

  4. V. N. Bogomolov, S. V. Gaponenko, I. N. Germanenko, et al., Phys. Rev. E 55, 7619 (1997).

    Article  ADS  Google Scholar 

  5. T. Yamasaki and T. Tsutsui, Jpn. J. Appl. Phys. 38, 5916 (1999).

    Article  ADS  Google Scholar 

  6. W. Sun, G. Videen, and B. Lin, Appl. Opt. 46, 1150 (2007).

    Article  ADS  Google Scholar 

  7. B. Wang, Yi Jin, and S. He, J. Appl. Phys. 106, 014508 (2009).

    Article  ADS  Google Scholar 

  8. B. K. Nayak, K. Sun, Ch. Rothenbach, et al., Appl. Opt. 50, 2349 (2011).

    Article  ADS  Google Scholar 

  9. G. Fujii, T. Matsumoto, and T. Takahashi, Opt. Express 20, 7300 (2012).

    Article  ADS  Google Scholar 

  10. X. H. Wu, A. Yamilov, H. Noh, et al., J. Opt. Soc. B 21, 159 (2004).

    Article  ADS  Google Scholar 

  11. Y. Rho, M. Wanit, J. Yeo, et al., J. Phys. D: Appl. Phys. 46, 024006 (2013).

    Article  ADS  Google Scholar 

  12. D. S. Wiersma, Nat. Photon. 7, 188 (2013).

    Article  ADS  Google Scholar 

  13. I. Kim, D. S. Jeong, W. S. Lee, et al., Opt. Express 22, A1431 (2014).

    Article  Google Scholar 

  14. V. A. Loiko and A. A. Miskevich, Opt. Spectrosc. 115, 274 (2013).

    Article  ADS  Google Scholar 

  15. A. A. Miskevich and V. A. Loiko, J. Quant. Spectrosc. Radiat. Transfer 136, 58 (2014).

    Article  ADS  Google Scholar 

  16. A. A. Miskevich and V. A. Loiko, J. Quant. Spectrosc. Radiat. Transfer 146, 355 (2014).

    Article  ADS  Google Scholar 

  17. A. A. Miskevich and V. A. Loiko, J. Quant. Spectrosc. Radiat. Transfer 167, 23 (2015).

    Article  ADS  Google Scholar 

  18. V. A. Loiko and A. A. Miskevich, Opt. Spectrosc. 122, 799 (2017).

    Article  ADS  Google Scholar 

  19. K. Ohtaka, J. Phys. C: Solid State Phys. 13, 667 (1980).

    Article  ADS  Google Scholar 

  20. K. Ohtaka, Y. Suda, and S. Nagano, Phys. Rev. B 61, 5267 (2000).

    Article  ADS  Google Scholar 

  21. A. Modinos, Phys. A 141, 575 (1987).

    Article  Google Scholar 

  22. N. Stefanou and A. Modinos, J. Phys: Condens. Matter 3, 8135 (1991).

    ADS  Google Scholar 

  23. N. Stefanou and A. Modinos, J. Phys: Condens. Matter 5, 8859 (1993).

    ADS  Google Scholar 

  24. L. L. Foldy, Phys. Rev. 67, 107 (1945).

    Article  ADS  MathSciNet  Google Scholar 

  25. M. Lax, Rev. Mod. Phys. 23, 287 (1951).

    Article  ADS  MathSciNet  Google Scholar 

  26. M. Lax, Phys. Rev. 85, 621 (1952).

    Article  ADS  Google Scholar 

  27. V. Twersky, J. Appl. Phys. 23, 407 (1952).

    Article  ADS  MathSciNet  Google Scholar 

  28. V. Twersky, J. Math. Phys. 16, 633 (1975).

    Article  ADS  Google Scholar 

  29. J. G. Fikioris and P. C. Waterman, J. Math. Phys. 5, 1413 (1964); J. Quant. Spectrosc. Radiat. Transfer 123, 8 (2013).

    Article  ADS  Google Scholar 

  30. N. C. Mathur and K. C. Yeh, J. Math. Phys. 5, 1619 (1964).

    Article  ADS  Google Scholar 

  31. V. V. Varadan and V. K. Varadan, Phys. Rev. D 21, 388 (1980).

    Article  ADS  Google Scholar 

  32. L. Tsang and J. A. Kong, Radio Sci. 18, 1260 (1983).

    Article  ADS  Google Scholar 

  33. L. Tsang, C.-T. Chen, A. T. C. Chang, et al., Radio Sci. 35, 731 (2000).

    Article  ADS  Google Scholar 

  34. K. M. Hong, J. Opt. Soc. Am. 70, 821 (1980).

    Article  ADS  Google Scholar 

  35. D. Mackowski, Proc. R. Soc. London A 433, 599 (1991); J. Opt. Soc. Am. A 11, 2851 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  36. Y. Xu, Appl. Opt. 34, 4573 (1995); Phys. Lett. A 249, 30 (1998).

    Article  ADS  Google Scholar 

  37. V. G. Vereshchagin, A. N. Ponyavina, and N. I. Sil’vanovich, Dokl. Akad. Nauk BSSR 34, 123 (1990).

    Google Scholar 

  38. A. N. Ponyavina, J. Appl. Spectrosc. 65, 752 (1998).

    Article  ADS  Google Scholar 

  39. A. N. Ponyavina, S. M. Kachan, and N. I. Sil’vanovich, J. Opt. Soc. Am. B 21, 1866 (2004).

    Article  ADS  Google Scholar 

  40. V. Loiko and V. Molochko, Part. Part. Syst. Charact. 13, 227 (1996).

    Article  Google Scholar 

  41. V. A. Loiko, V. P. Dick, and A. P. Ivanov, J. Opt. Soc. Am. A 17, 2040 (2000).

    Article  ADS  Google Scholar 

  42. V. A. Loiko and A. A. Miskevich, Appl. Opt. 44, 3759 (2005).

    Article  ADS  Google Scholar 

  43. V. A. Loiko and A. A. Miskevich, Opt. Spectrosc. 98, 61 (2005).

    Article  ADS  Google Scholar 

  44. M. I. Mishchenko, L. Liu, D. W. Mackowski, et al., Opt. Express 15, 2822 (2007).

    Article  ADS  Google Scholar 

  45. Y. Okada and A. A. Kokhanovsky, J. Quant. Spectrosc Radiat. Transfer 110, 902 (2009).

    Article  ADS  Google Scholar 

  46. A. García-Valenzuela, E. Gutiérrez-Reyes, and R. Barrera, J. Opt. Soc. Am. A 29, 1161 (2012).

    Article  ADS  Google Scholar 

  47. J. Ziman, Models of Disorder (Cambridge Univ. Press, Cambridge, 1979), p. 525.

    Google Scholar 

  48. V. I. Iveronova and G. P. Revkevich, The Theory of X-Ray Dispersion (Mosk. Gos. Univ., Moscow, 1978), p. 278 [in Russian].

    Google Scholar 

  49. J. K. Percus and G. J. Yevick, Phys. Rev. 110, 1 (1958).

    Article  ADS  MathSciNet  Google Scholar 

  50. A. A. Miskevich and V. A. Loiko, J. Quant. Spectrosc. Radiat. Transfer 112, 1082 (2011).

    Article  ADS  Google Scholar 

  51. A. A. Miskevich and V. A. Loiko, J. Exp. Theor. Phys. 113, 1 (2011).

    Article  ADS  Google Scholar 

  52. A. A. Miskevich and V. A. Loiko, Nanosyst.: Phys. Chem. Math. 4, 778 (2013).

    Google Scholar 

  53. A. A. Miskevich and V. A. Loiko, J. Exp. Theor. Phys. 119, 211 (2014).

    Article  Google Scholar 

  54. A. A. Miskevich and V. A. Loiko, J. Quant. Spectrosc. Radiat. Transfer 151, 260 (2015).

    Article  ADS  Google Scholar 

  55. A. P. Ivanov, V. A. Loiko, and V. P. Dik, Light Propagation in Densely Packed Disperse Media (Nauka Tekhnika, Minsk, 1988), p. 191 [in Russian].

    Google Scholar 

  56. P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953).

    MATH  Google Scholar 

  57. V. A. Babenko, L. G. Astafyeva, and V. N. Kuzmin, Electromagnetic Scattering in Disperse Media: Inhomogeneous and Anisotropic Particles (Springer, Berlin, 2003), p. 434.

    Google Scholar 

  58. L. S. Ornstein and F. Zernike, Proc. Acad. Sci. 17, 793 (1914).

    Google Scholar 

  59. U. Fano, Phys. Rev. 124, 1866 (1961).

    Article  ADS  Google Scholar 

  60. A. B. Evlyukhin, C. Reinhardt, A. Seidel, et al., Phys. Rev. B 82, 045404 (2010).

    Article  ADS  Google Scholar 

  61. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, Rev. Mod. Phys. 82, 2257 (2010).

    Article  ADS  Google Scholar 

  62. M. V. Rybin, I. S. Sinev, K. B. Samusev, and M. F. Limonov, Phys. Solid State 56, 580 (2014).

    Article  ADS  Google Scholar 

  63. V. Berdnik and V. Loiko, Quantum electronics 36, 1016 (2006).

    Article  ADS  Google Scholar 

  64. Handbook of Optical Constants of Solids, Ed. by E. D. Palik (Academic, San Diego, 1985), Vol. 1.

  65. Y. Kurokawa, H. Miyazaki, and Y. Jimba, Phys. Rev. B 69, 155117 (2004).

    Article  ADS  Google Scholar 

  66. D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of Angular Momentum (Nauka, Leningrad, 1975; World Sci., Singapore, 1988).

    Book  Google Scholar 

  67. G. V. Arfken, H. J. Weber, and F. E. Harris, Mathematical Methods for Physicists, 7th. ed. (Academic Press, Oxford, 2012).

    MATH  Google Scholar 

  68. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, NY, 1983).

    Google Scholar 

  69. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Univ. Press, Cambridge, 2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Loiko.

Additional information

Original Russian Text © N.A. Loiko, A.A. Miskevich, V.A. Loiko, 2018, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 153, No. 2, pp. 193–209.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loiko, N.A., Miskevich, A.A. & Loiko, V.A. Method for Describing the Angular Distribution of Optical Radiation Scattered by a Monolayer of Ordered Spherical Particles (Normal Illumination). J. Exp. Theor. Phys. 126, 159–173 (2018). https://doi.org/10.1134/S1063776118020139

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776118020139

Navigation