Coulomb Logarithm in Nonideal and Degenerate Plasmas

  • A. V. Filippov
  • A. N. Starostin
  • V. K. Gryaznov
Statistical, Nonlinear, and Soft Matter Physics


Various methods for determining the Coulomb logarithm in the kinetic theory of transport and various variants of the choice of the plasma screening constant, taking into account and disregarding the contribution of the ion component and the boundary value of the electron wavevector are considered. The correlation of ions is taken into account using the Ornstein–Zernike integral equation in the hypernetted-chain approximation. It is found that the effect of ion correlation in a nondegenerate plasma is weak, while in a degenerate plasma, this effect must be taken into account when screening is determined by the electron component alone. The calculated values of the electrical conductivity of a hydrogen plasma are compared with the values determined experimentally in the megabar pressure range. It is shown that the values of the Coulomb logarithm can indeed be smaller than unity. Special experiments are proposed for a more exact determination of the Coulomb logarithm in a magnetic field for extremely high pressures, for which electron scattering by ions prevails.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. D. Landau, Zh. Eksp. Teor. Fiz. 7, 203 (1937).Google Scholar
  2. 2.
    L. Spitzer, Mon. Not. R. Astron. Soc. 100, 396 (1940).ADSCrossRefGoogle Scholar
  3. 3.
    R. S. Cohen, L. Spitzer, Jr., and P. McR. Routly, Phys. Rev. 80, 230 (1950).ADSCrossRefGoogle Scholar
  4. 4.
    L. Spitzer, Jr. and R. Härm, Phys. Rev. 89, 977 (1953).ADSCrossRefGoogle Scholar
  5. 5.
    L. Spitzer, Jr., Physics of Fully Ionized Gases (Interscience, London, 1956).zbMATHGoogle Scholar
  6. 6.
    S. V. Temko, Sov. Phys. JETP 4, 898 (1956).MathSciNetGoogle Scholar
  7. 7.
    O. V. Konstantinov and V. I. Perel’, Sov. Phys. JETP 14, 944 (1961).Google Scholar
  8. 8.
    S. Skupsky, Phys. Rev. A 16, 727 (1977).ADSCrossRefGoogle Scholar
  9. 9.
    Y. T. Lee and R. M. More, Phys. Fluids 27, 1273 (1984).ADSCrossRefGoogle Scholar
  10. 10.
    C.-K. Li and R. D. Petrasso, Phys. Rev. Lett. 70, 3063 (1993).ADSCrossRefGoogle Scholar
  11. 11.
    C. A. Ordonez and M. I. Molina, Phys. Plasmas 1, 2515 (1994).ADSCrossRefGoogle Scholar
  12. 12.
    E. Bésuelle, R. R. E. Salomaa, and D. Teychenné, Phys. Rev. E 60, 2260 (1999).ADSCrossRefGoogle Scholar
  13. 13.
    T. S. Ramazanov and S. K. Kodanova, Phys. Plasmas 8, 5049 (2001).ADSCrossRefGoogle Scholar
  14. 14.
    J. R. Correa, Y. Chang, and C. A. Ordonez, Phys. Plasmas 12, 084505 (2005).ADSCrossRefGoogle Scholar
  15. 15.
    D. O. Gericke, M. S. Murillo, and M. Schlanges, Phys. Rev. E 65, 036418 (2002).ADSCrossRefGoogle Scholar
  16. 16.
    L. S. Brown and R. L. Singleton, Jr., Phys. Rev. E 76, 066404 (2007).ADSCrossRefGoogle Scholar
  17. 17.
    L. G. Stanton and M. S. Murillo, Phys. Rev. E 93, 043203 (2016).ADSCrossRefGoogle Scholar
  18. 18.
    A. N. Starostin, V. K. Gryaznov, and A. V. Filippov, JETP Lett. 104, 696 (2016).ADSCrossRefGoogle Scholar
  19. 19.
    V. E. Fortov, Phys. Usp. 50, 333 (2007).ADSCrossRefGoogle Scholar
  20. 20.
    J. M. Ziman, Philos. Mag. 6, 1013 (1961).ADSCrossRefGoogle Scholar
  21. 21.
    J. M. Ziman, Proc. Phys. Soc. 86, 337 (1965).ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    J. M. Ziman, Adv. Phys. 13, 89 (1964).ADSCrossRefGoogle Scholar
  23. 23.
    C. C. Bradley, T. E. Faber, E. G. Wilson, and J. M. Ziman, Philos. Mag. 7, 865 (1962).ADSCrossRefGoogle Scholar
  24. 24.
    J. M. Ziman, Adv. Phys. 16, 551 (1967).ADSCrossRefGoogle Scholar
  25. 25.
    E. M. Livshits and L. P. Pitaevskii, Course of Theoretical Physics, Vol. 10: Physical Kinetics (Nauka, Moscow, 1979; Pergamon, Oxford, 1981).Google Scholar
  26. 26.
    R. B. Dingle, Philos. Mag. J. Sci. 46, 831 (1955).CrossRefGoogle Scholar
  27. 27.
    M. Goano, ACM Trans. Math. Software 21, 221 (1995).CrossRefGoogle Scholar
  28. 28.
    V. K. Gryaznov, Yu. V. Ivanov, A. N. Starostin, and V. E. Fortov, Teplofiz. Vys. Temp. 14, 643 (1976).Google Scholar
  29. 29.
    R. Barrie, Proc. Phys. Soc. B 69, 553 (1956).ADSCrossRefGoogle Scholar
  30. 30.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Fizmatlit, Moscow, 2002; Pergamon, Oxford, 1980).Google Scholar
  31. 31.
    I. Z. Fisher, Sov. Phys. Usp. 5, 239 (1962).ADSCrossRefGoogle Scholar
  32. 32.
    N. P. Kovalenko and I. Z. Fisher, Sov. Phys. Usp. 15, 592 (1972).ADSCrossRefGoogle Scholar
  33. 33.
    G. N. Sarkisov, Phys. Usp. 42, 545 (1999).ADSCrossRefGoogle Scholar
  34. 34.
    T. Morita and K. Hiroike, Progr. Theor. Phys. 23, 1003 (1960).ADSCrossRefGoogle Scholar
  35. 35.
    Yu. V. Arkhipov, A. Askaruly, A. E. Davletov, D. Yu. Dubovtsev, Z. Donkó, P. Hartmann, I. Korolov, L. Conde, and I. M. Tkachenko, Phys. Rev. Lett. 119, 045001 (2017).ADSCrossRefGoogle Scholar
  36. 36.
    A. V. Filippov, A. N. Starostin, I. M. Tkachenko, and V. E. Fortov, Phys. Lett. A 376, 31 (2011).ADSCrossRefGoogle Scholar
  37. 37.
    A. V. Filippov, A. N. Starostin, I. M. Tkachenko, and V. E. Fortov, Contrib. Plasma Phys. 53, 442 (2013).ADSCrossRefGoogle Scholar
  38. 38.
    K.-C. Ng, J. Chem. Phys. 61, 2680 (1974).ADSCrossRefGoogle Scholar
  39. 39.
    S. T. Weir, A. C. Mitchell, and W. J. Nellis, Phys. Rev. Lett. 76, 1860 (1996).ADSCrossRefGoogle Scholar
  40. 40.
    V. E. Fortov, V. Ya. Ternovoi, S. V. Kvitov, V. B. Mintsev, D. N. Nikolaev, A. A. Pyalling, and A. S. Filimonov, JETP Lett. 69, 926 (1999).ADSCrossRefGoogle Scholar
  41. 41.
    V. Ya. Ternovoi, A. S. Filimonov, V. E. Fortov, S. V. Kvitov, D. N. Nikolaev, and A. A. Pyalling, Phys. B: Condens. Matter 265, 6 (1999).ADSCrossRefGoogle Scholar
  42. 42.
    W. J. Nellis, S. T. Weir, and A. C. Mitchell, Phys. Rev. B 59, 3334 (1999).ADSCrossRefGoogle Scholar
  43. 43.
    R. Chau, A. C. Mitchell, R. W. Minich, and W. J. Nellis, Phys. Rev. Lett. 90, 245501 (2003).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. V. Filippov
    • 1
  • A. N. Starostin
    • 1
    • 2
  • V. K. Gryaznov
    • 3
    • 4
  1. 1.State Research Center of the Russian Federation Troitsk Institute for Innovation and Fusion ResearchTroitsk, MoscowRussia
  2. 2.Moscow Institute of Physics and Technology (State University)Dolgoprudnyi, Moscow oblastRussia
  3. 3.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  4. 4.Tomsk State UniversityTomskRussia

Personalised recommendations