Advertisement

Journal of Experimental and Theoretical Physics

, Volume 126, Issue 2, pp 174–182 | Cite as

Соllective Fluorescence of Composite Nanoparticles

  • A. A. Zabolotskii
  • A. S. Kuch’yanov
  • F. A. Benimetskii
  • A. I. Plekhanov
Atoms, Molecules, Optics

Abstract

Fluorescence of a suspension of spherical nanoparticles consisting of a gold core surrounded by silicon dioxide doped with fluorescein molecules is experimentally studied. The model of a composite nanoparticle is investigated theoretically and experimentally, taking into account polarization fluctuations. It is shown that a local nonlinear feedback in the system leads to characteristic temperature dependences of the fluorescence linewidth and intensity. As the medium was cooled from room temperature to liquid nitrogen temperature, the fluorescence spectrum narrowed and its intensity strongly increased. A comparison of experimental data with numerical calculations showed that the changes observed in experiments are not explained by the temperature dependence of the parameters of elements of a nanoparticle. The analysis of the dynamics of polarization phases of dye molecules showed that the synergetic effect should be taken into account, which forms the basis of plasmon–polariton superradiance.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, Berlin, 2007).CrossRefGoogle Scholar
  2. 2.
    V. V. Klimov, Nanoplasmonics (Fizmatlit, Moscow, 2010; Pan Stanford, Singapore, 2011).Google Scholar
  3. 3.
    E. S. Andrianov, A. P. Vinogradov, A. V. Dorofeenko, A. A. Zyablovskii, A. A. Lisyanskii, and A. A. Pukhov, Quantum Nanoplasmonics (Intellekt, Dolgoprudnyi, 2015) [in Russian].Google Scholar
  4. 4.
    E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington, A. S. Kuchyanov, R. G. Parkhomenko, F. Watanabe, Z. Nima, A. S. Biris, A. I. Plekhanov, M. I. Stockman, and V. P. Zharov, Nat. Commun. 8, 15528 (2017).ADSCrossRefGoogle Scholar
  5. 5.
    D. J. Bergman and M. I. Stockman, Phys. Rev. Lett. 90, 027401 (2003).ADSCrossRefGoogle Scholar
  6. 6.
    M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V.M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, Nature 460, 1110 (2009).ADSCrossRefGoogle Scholar
  7. 7.
    A. V. Sorokin, A. A. Zabolotskii, N. V. Pereverzev, S. L. Yefimova, Yu. V. Malyukin, and A. I. Plekhanov, J. Phys. Chem. C 118, 7599 (2014).CrossRefGoogle Scholar
  8. 8.
    A. V. Sorokin, A. A. Zabolotskii, N. V. Pereverzev, I. I. Bespalova, S. L. Yefimova, Y. V. Malyukin, and A. I. Plekhanov, J. Phys. Chem. C 119, 2743 (2015).CrossRefGoogle Scholar
  9. 9.
    A. A. Zabolotskii, Optoelectron. Instrum. Data Proc. 52, 388 (2016).CrossRefGoogle Scholar
  10. 10.
    E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. Muñoz Javier, and W. J. Parak, Nano Lett. 5, 585 (2005).ADSCrossRefGoogle Scholar
  11. 11.
    M. Haridas and J. K. Basu, Nanotechnology 21, 415202 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    M. Haridas, J. K. Basu, A. K. Tiwari, and M. Venkatapathi, J. Appl. Phys. 114, 064305 (2013).ADSCrossRefGoogle Scholar
  13. 13.
    M. Praveena, A. Mukherjee, M. Venkatapathi, and J. K. Basu, Phys. Rev. B 92, 235403 (2015).ADSCrossRefGoogle Scholar
  14. 14.
    R. Bonifacio and H. Morawitz, Phys. Rev. Lett. 36, 1559 (1976).ADSCrossRefGoogle Scholar
  15. 15.
    V. N. Pustovit and T. V. Shahbazyan, Phys. Rev. Lett. 102, 077401 (2009).ADSCrossRefGoogle Scholar
  16. 16.
    D. Martin-Cano, L. Martin-Moreno, F. J. Garcna-Vidal, and E. Moreno, Nano Lett. 10, 3129 (2010).ADSCrossRefGoogle Scholar
  17. 17.
    R. H. Dicke, Phys. Rev. 93, 99 (1954).ADSCrossRefGoogle Scholar
  18. 18.
    C. W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and Natural Sciences (Springer, Berlin, 1985).CrossRefzbMATHGoogle Scholar
  19. 19.
    E. S. Andrianov, A. A. Pukhov, A. P. Vinogradov, A. V. Dorofeenko, and A. A. Lisyansky, JETP Lett. 97, 452 (2013).ADSCrossRefGoogle Scholar
  20. 20.
    Chen-To Tai, Dyadic Green Functions in Electromagnetic Theory, IEEE Ser. Electromagn. Waves (IEEE, New York, 1994).Google Scholar
  21. 21.
    O. Svelto, Principles of Lasers (Springer, New York, 1998).CrossRefGoogle Scholar
  22. 22.
    W. E. Lawrence, Phys. Rev. B 13, 5316 (1976).ADSCrossRefGoogle Scholar
  23. 23.
    T. Holstein, Ann. Phys. 29, 410 (1964).ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    J.-S. G. Bouillard, W. Dickson, D. P. O’Connor, G. A. Wurtz, and A. V. Zayats, Nano Lett. 12, 1561 (2012).ADSCrossRefGoogle Scholar
  25. 25.
    R. Zwanzig, J. Chem. Phys. 33, 1338 (1960).ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    A. J. Leggett et al., Rev. Mod. Phys. 59, 1 (1987).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. A. Zabolotskii
    • 1
  • A. S. Kuch’yanov
    • 1
  • F. A. Benimetskii
    • 1
  • A. I. Plekhanov
    • 1
  1. 1.Institute of Automatics and Electrometry, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations