Advertisement

Journal of Experimental and Theoretical Physics

, Volume 126, Issue 2, pp 237–245 | Cite as

Dynamics of Electronic States and Magnetoabsorption in 3D Topological Insulators in a Quantizing Magnetic Field

  • R. V. Turkevich
  • D. V. Khomitsky
Electronic Properties of Solid

Abstract

Quantum states have been calculated analytically; the dynamics of a wave packet in a magnetic field has been investigated, and the optical absorption coefficient has been calculated for surface states in 3D topological insulators of the Bi2Te3 family. We have detected a qualitative effect of the hexagonal warping of the spectrum on the structure of wavefunctions at the Landau levels, its manifestation in the features of the wave packet dynamics in a quantizing magnetic field, as well as in the frequency dependence of the optical absorption coefficient, in which new peaks that are absent in the isotropic model of the spectrum appear depending on the polarization of the incident wave. The effects considered here can be manifested in the optical and transport experiments with topological insulators, which makes it possible to determine the parameters of their band structure.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Z. Hasan and C. L. Kane, Rev. Mod. Phys 82, 3045 (2010).ADSCrossRefGoogle Scholar
  2. 2.
    X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).ADSCrossRefGoogle Scholar
  3. 3.
    B. A. Bernevig, Topological Insulators and Topological Superconductors (Princeton Univ. Press, Princeton, USA, 2013).CrossRefzbMATHGoogle Scholar
  4. 4.
    Topological Insulators. Fundamentals and Perspectives, Ed. by F. Ortmann, S. Roche, and S. O. Valenzuela (Wiley-VCH, Weinheim, 2015).Google Scholar
  5. 5.
    B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science 314, 1757 (2006).ADSCrossRefGoogle Scholar
  6. 6.
    M. König, H. Buhmann, L. W. Molenkamp, et al., J. Phys. Soc. Jpn. 77, 031007 (2008).ADSCrossRefGoogle Scholar
  7. 7.
    Y. L. Chen, J. G. Analytis, J.-H. Chu, et al., Science 325, 178 (2009).ADSCrossRefGoogle Scholar
  8. 8.
    C. Chen, S. He, H. Weng, et al., Proc. Natl. Acad. Sci. USA 109, 3694 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    M. Nomura, S. Souma, A. Takayama, et al., Phys. Rev. B 89, 045134 (2014).ADSCrossRefGoogle Scholar
  10. 10.
    S. S. Krishtopenko, I. Yannik, D. B. But, et al., Phys. Rev. B 94, 245402 (2016).ADSCrossRefGoogle Scholar
  11. 11.
    A. V. Ikonnikov, S. S. Krishtopenko, O. Drachenko, et al., Phys. Rev. B 94, 155421 (2016).ADSCrossRefGoogle Scholar
  12. 12.
    A. Shuvaev, V. Dziom, Z. D. Kvon, et al., Phys. Rev. Lett. 117, 117401 (2016).ADSCrossRefGoogle Scholar
  13. 13.
    M. Marcinkiewicz, S. Ruffenach, S. S. Kristopenko, et al., Phys. Rev. B 96, 035405 (2017).ADSCrossRefGoogle Scholar
  14. 14.
    K.-M. Dantscher, D. A. Kozlov, M. T. Scherr, et al., Phys. Rev. B 95, 201103 (2017).ADSCrossRefGoogle Scholar
  15. 15.
    A. Inhofer, S. Tchoumakov, B. A. Assaf, et al., arXiv:1704.04045.Google Scholar
  16. 16.
    L. Fu, Phys. Rev. Lett. 103, 266801 (2009).ADSCrossRefGoogle Scholar
  17. 17.
    C.-X. Liu, X.-L. Qi, H. Zhang, et al., Phys. Rev. B 82, 045122 (2010).ADSCrossRefGoogle Scholar
  18. 18.
    E. V. Repin and I. S. Burmistrov, J. Exp. Theor. Phys. 121, 509 (2015).ADSCrossRefGoogle Scholar
  19. 19.
    Y.-Y. Zhang, X.-R. Wang, and X. C. Xie, J. Phys.: Condens. Matter 24, 015004 (2012).ADSGoogle Scholar
  20. 20.
    Z. Li and J. P. Carbotte, Phys. Rev. B 87, 155416 (2013).ADSCrossRefGoogle Scholar
  21. 21.
    X. Xiao and W. Wen, Phys. Rev. B 88, 045442 (2013).ADSCrossRefGoogle Scholar
  22. 22.
    A. A. Taskin and Y. Ando, Phys. Rev. B 84, 035301 (2011).ADSCrossRefGoogle Scholar
  23. 23.
    Z. Wang, Z.-G. Fe, S.-X. Wang, et al., Phys. Rev. B 82, 085429 (2010).ADSCrossRefGoogle Scholar
  24. 24.
    G. P. Mikitik and Yu. V. Sharlai, Phys. Rev. B 85, 033301 (2012).ADSCrossRefGoogle Scholar
  25. 25.
    D.-X. Qu, Y. S. Hor, J. Xiong, et al., Science 329, 821 (2010).ADSCrossRefGoogle Scholar
  26. 26.
    A. Wolos, S. Szyszko, A. Drabinska, et al., Phys. Rev. Lett. 109, 247604 (2012).ADSCrossRefGoogle Scholar
  27. 27.
    I. Sh. Averbukh and N. F. Perel’man, Sov. Phys. Usp. 34, 572 (1991).ADSCrossRefGoogle Scholar
  28. 28.
    E. Romera and F. de los Santos, Phys. Rev. B 80, 165416 (2009).ADSCrossRefGoogle Scholar
  29. 29.
    V. Ya. Demikhovskii, A. V. Telezhnikov, E. V. Frolova, and N. A. Kravets, J. Low Temp. Phys. 39, 18 (2013).CrossRefGoogle Scholar
  30. 30.
    V. Ya. Demikhovskii and R. V. Turkevich, JETP Lett. 101, 449 (2015).ADSCrossRefGoogle Scholar
  31. 31.
    M. V. Entin, M. M. Mahmoodian, and L. I. Magarill, arXiv:1704.05635.Google Scholar
  32. 32.
    R. V. Turkevich, V. Ya. Demikhovskii, and A. P. Protogenov, Semiconductors 51, 1495 (2017).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.National Research Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia
  2. 2.Institute of Applied PhysicsRussian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations