Skip to main content
Log in

Selective Reflection of Potassium Vapor Nanolayers in a Magnetic Field

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The selective reflection of laser radiation from the interface between a dielectric window and the atomic vapors confined in a nanocell of thickness L ≈ 350 nm is used to develop effective Doppler-broadening- free spectroscopy of potassium atoms. A small atomic line width and a relation between the signal intensity and the transition probability allowed us to resolve four lines of atomic transitions responsible for the D1 lines of the 39K and 41K isotopes. Two groups containing four atomic transitions form in an applied magnetic field upon pumping by radiation with circular polarization σ+ or σ. Different intensities (probabilities) of transitions for the σ+ and σ excitations are detected in magnetic field B0A hfs B ≈ 165 G (A hfs is the magnetic dipole constant for the ground state and μB is the Bohr magneton). A substantially different situation is observed at BB0, since high symmetry appears for the two groups formed by radiation with circular polarization σ+ or σ. Each group is the mirror image of the other group with respect to the frequency of the 42S1/2–42P1/2 transition, which additionally proves the occurrence of the complete Paschen–Back regime of the hyperfine structure at B ≈ 2.5 kG. A developed theoretical model well reproduces the experimental results. Possible practical applications are described. The results obtained can also be applied to the D1 lines of 87Rb and 23Na.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Sargsyan, E. Klinger, Y. Pashayan-Leroy, C. Leroy, A. Papoyan, and D. Sarkisyan, JETP Lett. 104, 224 (2016).

    Article  ADS  Google Scholar 

  2. A. Sargsyan, E. Klinger, G. Hakhumyan, A. Tonoyan, A. Papoyan, C. Leroy, and D. Sarkisyan, J. Opt. Soc. Am. B 34, 776 (2017).

    Article  ADS  Google Scholar 

  3. A. Sargsyan, A. Papoyan, I. G. Hughes, Ch. S. Adams, and D. Sarkisyan, Opt. Lett. 42, 1476 (2017).

    Article  ADS  Google Scholar 

  4. E. Klinger, A. Sargsyan, C. Leroy, and D. Sarkisyan, J. Exp. Theor. Phys. 125, 543 (2017).

    Article  ADS  Google Scholar 

  5. T. A. Vartanyan and D. L. Lin, Phys. Rev. A 51, 1959 (1995).

    Article  ADS  Google Scholar 

  6. D. Bloch, M. Ducloy, N. Senkov, V. Velichansky, and V. Yudin, Laser Phys. 6, 670 (1996).

    Google Scholar 

  7. K. Pahwa, L. Mudarikwa, and J. Goldwin, Opt. Express 20, 17456 (2012).

    Article  ADS  Google Scholar 

  8. A. Lampis, R. Culver, B. Mesyeri, and J. Goldwin, Opt. Express 24, 15494 (2016).

    Article  ADS  Google Scholar 

  9. B. Zlatković, A. J. Krmpot, N. Śibalić, M. Radonjić, and B. M. Jelenković, Laser Phys. Lett. 13, 015205 (2016).

    Article  ADS  Google Scholar 

  10. B. A. Olsen, B. Patton, Y. Y. Jau, and W. Happer, Phys. Rev. A 84, 063410 (2011).

    Article  ADS  Google Scholar 

  11. M. Zentile, J. Keaveney, L. Weller, D. J. Whiting, C. S. Adams, and I. G. Hughes, Comput. Phys. Commun. 189, 162 (2015).

    Article  ADS  Google Scholar 

  12. J. Keaveney, A. Sargsyan, U. Krohn, D. Sarkisyan, I. G. Hughes, and C. S. Adams, Phys. Rev. Lett. 108, 173601 (2012).

    Article  ADS  Google Scholar 

  13. A. Sargsyan, A. Tonoyan, G. Hakhumyan, C. Leroy, Y. Pashayan-Leroy, and D. Sarkisyan, Europhys. Lett. 110, 23001 (2015).

    Article  ADS  Google Scholar 

  14. G. Dutier, A. Yarovitski, S. Saltiel, A. Papoyan, D. Sarkisyan, D. Bloch, and M. Ducloy, Europhys. Lett. 63, 35 (2003).

    Article  ADS  Google Scholar 

  15. D. A. Smith and I. G. Hughes, Am. J. Phys. 72, 631 (2004).

    Article  ADS  Google Scholar 

  16. J. A. Zielinska, F. A. Beduini, N. Godbout, and M. W. Mitchell, Opt. Lett. 37, 524 (2012).

    Article  ADS  Google Scholar 

  17. P. Tremblay, A. Michaud, M. Levesque, S. Thériault, M. Breton, J. Beaubien, and N. Cyr, Phys. Rev. A 42, 2766 (1990).

    Article  ADS  Google Scholar 

  18. E. B. Aleksandrov, M. P. Chaika, and G. I. Khvostenko, Interference of Atomic States, Vol. 7 of Springer Series on Atomic, Optical, and Plasma Physics (Springer, Berlin, 1993).

    Google Scholar 

  19. M. Auzinsh, D. Budker, and S. M. Rochester, Optically Polarized Atoms: Understanding Light-Atom Interactions (Oxford Univ. Press, Oxford, 2010), p. 55.

    MATH  Google Scholar 

  20. A. Sargsyan, G. Hakhumyan, C. Leroy, Y. Pashayan- Leroy, A. Papoyan, D. Sarkisyan, and M. Auzinsh, J. Opt. Soc. Am. B 31, 1046 (2014).

    Article  ADS  Google Scholar 

  21. D. Budker, W. Gawlik, D. Kimball, S. R. Rochester, V. V. Yaschuk, and A. Weis, Rev. Mod. Phys. 74, 1153 (2002).

    Article  ADS  Google Scholar 

  22. A. Sargsyan, G. Hakhumyan, C. Leroy, Y. Pashayan- Leroy, A. Papoyan, and D. Sarkisyan, Opt. Lett. 37, 1379 (2012).

    Article  ADS  Google Scholar 

  23. L. Weller, K. S. Kleinbach, M. A. Zentile, S. Knappe, C. S. Adams, and I. G. Hughes, J. Phys. B 45, 215005 (2012).

    Article  ADS  Google Scholar 

  24. L. Weller, K. S. Kleinbach, M. A. Zentile, S. Knappe, I. G. Hughes, and C. S. Adams, Opt. Lett. 37, 3405 (2012).

    Article  ADS  Google Scholar 

  25. M. A. Zentile, R. Andrews, L. Weller, S. Knappe, C. S. Adams, and I. G. Hughes, J. Phys. B 47, 075005 (2014).

    Article  ADS  Google Scholar 

  26. A. Sargsyan, A. Amiryan, T. A. Vartanyan, and D. Sarkisyan, Opt. Spectrosc. 121, 790 (2016).

    Article  ADS  Google Scholar 

  27. A. Sargsyan, Y. Pashayan-Leroy, C. Leroy, and D. Sarkisyan, J. Phys. B 49, 075001 (2016).

    Article  ADS  Google Scholar 

  28. A. Sargsyan, A. Tonoyan, R. Mirzoyan, D. Sarkisyan, A. Wojciechowski, and W. Gawlik, Opt. Lett. 39, 2270 (2014).

    Article  ADS  Google Scholar 

  29. A. Sargsyan, G. Hakhumyan, A. Papoyan, D. Sarkisyan, A. Atvars, and M. Auzinsh, Appl. Phys. Lett. 93, 021119 (2008).

    Article  ADS  Google Scholar 

  30. Optical Magnetometry, Ed. by D. Budker and D. F. J. Kimball (Cambridge Univ. Press, Cambridge, 2013), p. 432.

    Google Scholar 

  31. K. A. Whittaker, J. Keaveney, I. G. Hughes, A. Sargysyan, D. Sarkisyan, B. Gmeiner, V. Sandoghdar, and C. S. Adams, J. Phys.: Conf. Ser. 635, 122006 (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sargsyan.

Additional information

Original Russian Text © A. Sargsyan, A. Tonoyan, J. Keaveney, I.G. Hughes, C.S. Adams, D. Sarkisyan, 2018, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 153, No. 3, pp. 355–365.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sargsyan, A., Tonoyan, A., Keaveney, J. et al. Selective Reflection of Potassium Vapor Nanolayers in a Magnetic Field. J. Exp. Theor. Phys. 126, 293–301 (2018). https://doi.org/10.1134/S106377611802005X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377611802005X

Navigation