Journal of Experimental and Theoretical Physics

, Volume 126, Issue 2, pp 217–223 | Cite as

Low-Temperature Schottky Anomalies and the Magnetic State of the p Electrons of Oxygen in Substituted Gd0.4Sr0.6CoO3 – δ Cobaltites

  • Yu. S. OrlovEmail author
  • V. A. Dudnikov
  • M. S. Platunov
  • M. V. Gorev
  • D. A. Velikanov
  • N. V. Kazak
  • S. Yu. Gavrilkin
  • L. A. Solov’ev
  • A. A. Veligzhanin
  • S. N. Vereshchagin
  • S. G. Ovchinnikov
Order, Disorder, and Phase Transition in Condensed System


The XANES spectra (X-ray absorption near-edge spectra) at the K edge of Co and the L3 edge of Gd in polycrystalline Gd0.4Sr0.6CoO3 – δ rare-earth oxides with an ordered and disordered distribution of Gd3+ and Sr2+ cations over the A sites in the crystal lattice are measured. The results of XANES measurements do not reveal a noticeable shift in the absorption edge with increasing Sr concentration as compared to the GdCoO3 parent composition. The measured temperature dependences of the heat capacity of polycrystalline ordered and disordered samples and a single-crystal ordered Gd0.4Sr0.6CoO2.85 sample exhibit two Schottky anomalies. These anomalies are thought to be related to the high-spin state of the Co3+ ions in the pyramidal environment caused by oxygen deficiency and to the magnetic state of oxygen p electrons induced by the doping-assisted generation of a hole in the 2p state. The absence of a noticeable shift in the absorption edge and the presence of two Schottky anomalies support the fact that the charge state of cobalt remains unchanged in the compounds under study.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. B. Ivanova, S. G. Ovchinnikov, M. M. Korshunov, I. M. Eremin, and N. V. Kazak, Phys. Usp. 52, 789 (2009).ADSCrossRefGoogle Scholar
  2. 2.
    M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998).ADSCrossRefGoogle Scholar
  3. 3.
    J. Goodenough, Rep. Prog. Phys. 67, 1915 (2004).ADSCrossRefGoogle Scholar
  4. 4.
    S. Maekava, T. Tohyama, S. E. Barnes, S. Ishihara, W. Koshibae, and G. Khaliullin, Physics of Transition Metal Oxides (Springer, Berlin, 2004).CrossRefGoogle Scholar
  5. 5.
    M. A. Senaris-Rodriguez and J. B. Goodenough, J. Sol. St. Chem. 118, 323 (1995).ADSCrossRefGoogle Scholar
  6. 6.
    M. Itoh, I. Natori, S. Kubota, and K. Motoya, J. Magn. Magn. Mater. 140–144, 1811 (1995).CrossRefGoogle Scholar
  7. 7.
    J. Wu and C. Leighton, Phys. Rev. B 67, 174408 (2003).ADSCrossRefGoogle Scholar
  8. 8.
    T. N. Vasil’chikova, T. G. Kuz’mova, A. A. Kamenev, A. R. Kaul’, and A. N. Vasil’ev, JETP Lett. 97, 34 (2013).ADSCrossRefGoogle Scholar
  9. 9.
    M. S. Platunov, V. A. Dudnikov, Yu. S. Orlov, N. V. Kazak, L. A. Solovyov, Ya. V. Zubavichus, A. A. Veligzhanin, P. V. Dorovatovskii, S. N. Vereshchagin, K. A. Shaykhutdinov, and S. G. Ovchinnikov, JETP Lett. 103, 196 (2016).ADSCrossRefGoogle Scholar
  10. 10.
    H. Reitveld, J. Appl. Crystallogr. 2, 65 (1969).CrossRefGoogle Scholar
  11. 11.
    L. A. Solovyov, J. Appl. Crystallogr. 37, 743 (2004).CrossRefGoogle Scholar
  12. 12.
    K. Conder, E. Pomjakushina, A. Soldatov, and E. Mitberg, Mater. Res. Bull. 40, 257 (2005).CrossRefGoogle Scholar
  13. 13.
    O. Haas, R. Struis, and J. M. McBreen, J. Solid State Chem. 177, 1000 (2004).ADSCrossRefGoogle Scholar
  14. 14.
    J. Y. Chang, B. N. Lin, Y. Y. Hsu, and H. C. Ku, Phys. B (Amsterdam, Neth.) 329, 826 (2003).ADSCrossRefGoogle Scholar
  15. 15.
    F. J. Berry, J. F. Marco, and X. Ren, J. Sol. St. Chem. 178, 961 (2005).ADSCrossRefGoogle Scholar
  16. 16.
    M. Sikora, Cz. Kapusta, K. Knizek, Z. Jirak, C. Autret, M. Borowiec, C. J. Oates, V. Prochazka, D. Rybicki, and D. Zajac, Phys. Rev. B 73, 094426 (2006).ADSCrossRefGoogle Scholar
  17. 17.
    V. Kumar, R. Kumar, D. K. Shukla, S. Gautam, K. H. Chae, and R. Kumar, J. Appl. Phys. 114, 073704 (2013).ADSCrossRefGoogle Scholar
  18. 18.
    O. Toulemonde, N. N’Guyen, F. Studer, and A. Traverse, J. Sol. St. Chem. 158, 208 (2001).ADSCrossRefGoogle Scholar
  19. 19.
    Y. Jiang et al., Phys. Rev. B 80, 144423 (2009).ADSCrossRefGoogle Scholar
  20. 20.
    T. Saitoh, T. Mizokawa, A. Fujimori, M. Abbate, Y. Takeda, and M. Takano, Phys. Rev. B 56, 1290 (1997).ADSCrossRefGoogle Scholar
  21. 21.
    S. Medling, Y. Lee, H. Zheng, J. F. Mitchell, J. W. Freeland, B. N. Harmon, and F. Bridges, Phys. Rev. Lett. 109, 157204 (2012).ADSCrossRefGoogle Scholar
  22. 22.
    G. Vanko, J.-P. Rueff, A. Mattila, Z. Nemeth, and A. Shukla, Phys. Rev. B 73, 024424 (2006).ADSCrossRefGoogle Scholar
  23. 23.
    N. Ghosh, U. K. Robler, K. Nenkov, C. Hucho, H. L. Bhat, and K.-H. Muller, J. Phys.: Condens. Matter 20, 395219 (2008).Google Scholar
  24. 24.
    Z. Hu, Hua Wu, M. W. Haverkort, H. H. Hsieh, H.-J. Lin, T. Lorenz, J. Baier, A. Reichl, I. Bonn, C. Felser, A. Tanaka, C. T. Chen, and L. H. Tjeng, Phys. Rev. Lett. 92, 207402 (2004).ADSCrossRefGoogle Scholar
  25. 25.
    C. He, H. Zheng, J. F. Mitchell, M. L. Foo, R. J. Cava, and C. Leighton, Appl. Phys. Lett. 94, 102514 (2009).ADSCrossRefGoogle Scholar
  26. 26.
    S. Noguchi, S. Kawamata, K. Okuda, H. Nojiri, and M. Motokawa, Phys. Rev. B 66, 094404 (2002).ADSCrossRefGoogle Scholar
  27. 27.
    M. W. Haverkort, Z. Hu, J. C. Cezar, T. Burnus, H. Hartmann, M. Reuther, C. Zobel, T. Lorenz, A. Tanaka, N. B. Brookes, H. H. Hsieh, H.-J. Lin, C. T. Chen, and L. H. Tjeng, Phys. Rev. Lett. 97, 176405 (2006).ADSCrossRefGoogle Scholar
  28. 28.
    A. Podlesnyak, S. Streule, J. Mesot, M. Medarde, E. Pomjakushina, K. Conder, A. Tanaka, M. W. Haverkort, and D. I. Khomskii, Phys. Rev. Lett. 97, 247208 (2006).ADSCrossRefGoogle Scholar
  29. 29.
    Z. Ropka and R. J. Radwanski, Phys. Rev. B 67, 172401 (2003).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • Yu. S. Orlov
    • 1
    • 2
    Email author
  • V. A. Dudnikov
    • 1
  • M. S. Platunov
    • 1
  • M. V. Gorev
    • 1
  • D. A. Velikanov
    • 1
  • N. V. Kazak
    • 1
  • S. Yu. Gavrilkin
    • 3
  • L. A. Solov’ev
    • 4
  • A. A. Veligzhanin
    • 5
  • S. N. Vereshchagin
    • 4
  • S. G. Ovchinnikov
    • 1
  1. 1.Kirensky Institute of Physics, Siberian BranchRussian Academy of SciencesKrasnoyarskRussia
  2. 2.Siberian Federal UniversityKrasnoyarskRussia
  3. 3.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  4. 4.Institute of Chemistry and Chemical Technology, Siberian BranchRussian Academy of SciencesKrasnoyarskRussia
  5. 5.Russian Research Centre “Kurchatov Institute,”MoscowRussia

Personalised recommendations