Skip to main content
Log in

Mechanisms of Rotational Dynamics of Chiral Liquid Crystal Droplets in an Electric Field

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The dynamics of the orientational structure of chiral nematic (CN) droplets in an isotropic medium in dc and ac electric fields is investigated by the polarized light microscopy technique. It is shown theoretically that the dynamics of rotational processes in these kinds of systems is determined by electroconvective processes developing due to the flexoelectric polarization associated with the initial configuration of the director field in droplets. It is established experimentally that the linear and quadratic regions of dependence of the rotational velocity of droplets on the electric field strength are explained by the above-mentioned mechanisms. Numerical simulation on the basis of the approach developed gives good agreement with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. P. Crawford and S. Zumer, Liquid Crystals in Complex Geometries (Taylor and Francis, London, 1996).

    Google Scholar 

  2. G. E. Volovik and O. D. Lavrentovich, Sov. Phys. JETP 58, 1159 (1983).

    Google Scholar 

  3. M. V. Kurik and O. D. Lavrentovich, Sov. Phys. Usp. 31, 196 (1988).

    Article  ADS  Google Scholar 

  4. H. G. Graighead, J. Cheng, and S. Hackwood, Appl. Phys. Lett. 40, 22 (1982).

    Article  ADS  Google Scholar 

  5. G. M. Zharkova and A. C. Sonin, Liquid Crystal Composites (Nauka, Novosibirsk, 1994) [in Russian].

    Google Scholar 

  6. P. S. Drzaic, Liquid Crystal Dispersions (World Scientific, Singapore, 1995).

    Book  Google Scholar 

  7. J. W. Doane, A. Golemme, J. L. West, J. B. Whitehead, and B. G. Wu, Mol. Cryst. Liq. Cryst. 165, 511 (1988).

    Google Scholar 

  8. S. J. Klosowicz and J. Zmija, Opt. Eng. 34, 3440 (1995).

    Article  ADS  Google Scholar 

  9. O. O. Prishchepa, A. V. Shabanov, V. Ya. Zyryanov, A.M. Parshin, and V. G. Nazarov, JETP Lett. 84, 607 (2007).

    Article  ADS  Google Scholar 

  10. D. Semerenko, D. Smeliova, S. Pasechnik, A. Murauskii, V. Tsvetkov, and V. Chigrinov, Opt. Lett. 35, 2155 (2010).

    Article  ADS  Google Scholar 

  11. Yu. I. Timirov, O. S. Tarasov, and O. A. Skaldin, Tech. Phys. Lett. 33, 209 (2007).

    Article  ADS  Google Scholar 

  12. O. A. Skaldin and Yu. I. Timirov, JETP Lett. 90, 633 (2009).

    Article  ADS  Google Scholar 

  13. G. I. Maksimochkin, S. V. Pasechnik, and A. V. Lukin, Tech. Phys. Lett. 41, 676 (2015).

    Article  ADS  Google Scholar 

  14. Yu. I. Timirov, O. A. Skaldin, E. R. Basyrova, and Yu. A. Lebedev, Phys. Solid State 57, 1912 (2015).

    Article  ADS  Google Scholar 

  15. Yu. I. Timirov, O. A. Skaldin, and E. R. Basyrova, Tech. Phys. Lett. 41, 336 (2015).

    Article  ADS  Google Scholar 

  16. O. Lehmann, Ann. Phys. 2, 649 (1900).

    Article  Google Scholar 

  17. P. Oswald and A. Dequidt, Phys. Rev. Lett. 100, 217802 (2008).

    Article  ADS  Google Scholar 

  18. T. Yamamoto, M. Kuroda, and M. Sano, Europhys. Lett. 109, 46001 (2015).

    Article  ADS  Google Scholar 

  19. N. V. Madhusudana and R. Pratibha, Liq. Cryst. 5, 1827 (1989).

    Article  Google Scholar 

  20. N. V. Madhusudana, R. Pratibha, and H. P. Padmini, Mol. Cryst. Liq. Cryst. 202, 35 (1991).

    Article  Google Scholar 

  21. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon, Oxford, 1993).

    Google Scholar 

  22. N. V. Madhusudana, in Modern Topics in Liquid Crystals, Ed. by A. Buka (World Scientific, Singapore, 1989), p. 195.

  23. O. S. Tarasov, A. P. Krekhov, and L. Kramer, Phys. Rev. E 68, 031708 (2003).

    Article  ADS  Google Scholar 

  24. O. A. Skaldin, Yu. I. Timirov, and Yu. A. Lebedev, Tech. Phys. Lett. 36, 885 (2010).

    Article  ADS  Google Scholar 

  25. S. A. Pikin, Structural Transformations in Liquid Crystals (Nauka, Moscow, 1981; Gordon and Breach Sci., New York, 1991).

    Google Scholar 

  26. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Pergamon, New York, 1984).

    Google Scholar 

  27. O. S. Tarasov, PhD Thesis (Univ. Bayreuth, 2003).

    Google Scholar 

  28. M. Treiber and L. Kramer, Mol. Cryst. Liq. Cryst. 261, 311 (1995).

    Article  Google Scholar 

  29. J. Bajc and S. Zumer, Phys. Rev. E 55, 2925 (1997).

    Article  ADS  Google Scholar 

  30. D. Gottlieb and S. A. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications (CapitalCity, Montpelier, 1993).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Timirov.

Additional information

Original Russian Text © O.A. Skaldin, O.S. Tarasov, Yu.I. Timirov, E.R. Basyrova, 2018, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 153, No. 2, pp. 304–312.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skaldin, O.A., Tarasov, O.S., Timirov, Y.I. et al. Mechanisms of Rotational Dynamics of Chiral Liquid Crystal Droplets in an Electric Field. J. Exp. Theor. Phys. 126, 255–261 (2018). https://doi.org/10.1134/S1063776118010181

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776118010181

Navigation