Advertisement

Journal of Experimental and Theoretical Physics

, Volume 126, Issue 2, pp 194–200 | Cite as

Tidal Effects in Some Regular Black Holes

  • M. Sharif
  • S. Sadiq
Nuclei, Particles, Fields, Gravitation, and Astrophysics

Abstract

This paper is aimed to study the tidal forces produced by a class of regular black holes. We consider the radial infall of test particle and find radial as well as angular components of tidal forces by taking geodesic deviation equations. We also compute geodesic deviation vector by solving geodesic deviation equation numerically. It is concluded that a particle undergos either compression or stretching in radial or angular direction due to tidal forces.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. Y. Gnedin, Astrophys. J. 582, 141 (2003).ADSCrossRefGoogle Scholar
  2. 2.
    L. Baiotti, T. Damour, B. Giacomazzo, A. Nagar, and L. Rezzolla, Phys. Rev. Lett. 105, 261101 (2010).ADSCrossRefGoogle Scholar
  3. 3.
    C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, San Francisco, 1973).Google Scholar
  4. 4.
    J. P. Luminet and J. A. Marek, Mon. Not. R. Astron. Soc. 212, 57 (1985).ADSCrossRefGoogle Scholar
  5. 5.
    U. Kostic, A. Cadez, M. Calvani, and A. Gomboc, Astron. Astrophys. 496, 307 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    M. Kesden, Phys. Rev. D 85, 024037 (2012).ADSCrossRefGoogle Scholar
  7. 7.
    R. M. Cheng and T. Bogdanovi, Phys. Rev. D 90, 064020 (2014).ADSCrossRefGoogle Scholar
  8. 8.
    L. C. B. Crispino, A. Higuchi, L. A. Oliveira, and E. S. de Oliveira, Eur. Phys. J. C 76, 168 (2016).ADSCrossRefGoogle Scholar
  9. 9.
    J. Servin and M. Kesden, Phys. Rev. D 95, 083001 (2017).ADSCrossRefGoogle Scholar
  10. 10.
    R. Penrose, Riv. Nuovo Cim. 1, 252 (1969).ADSGoogle Scholar
  11. 11.
    J. M. Bardeen, in Proceedings of the International Conference on Gravitation and the Theory of Relativity GR5, Tbilisi, USSR, 1968, Ed. by V. A. Fock et al.Google Scholar
  12. 12.
    E. Ayón-Beato and A. Garcia, Phys. Lett. B 493, 149 (2000).ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    M. Sharif and W. Javed, J. Korean Phys. Soc. 57, 217 (2010).ADSCrossRefGoogle Scholar
  14. 14.
    M. Sharif and W. Javed, Can. J. Phys. 89, 1027 (2011).ADSCrossRefGoogle Scholar
  15. 15.
    E. F. Eiroa and C. M. Sendra, Class. Quantum Grav. 28, 085008 (2011).ADSCrossRefGoogle Scholar
  16. 16.
    S. A. Hayward, Phys. Rev. Lett. 96, 031103 (2006).ADSCrossRefGoogle Scholar
  17. 17.
    S. W. Wei, Y. X. Liu, and C. E. Fu, Adv. High Energy Phys. 2015, 454217 (2015).Google Scholar
  18. 18.
    E. Ayón-Beato and A. García, Phys. Rev. Lett. 80, 5056 (1998).ADSCrossRefGoogle Scholar
  19. 19.
    M. Sharif and N. Haider, Astrophys. Space Sci. 346, 111 (2013).ADSCrossRefGoogle Scholar
  20. 20.
    Z. Stuchlík and J. Schee, Int. J. Mod. Phys. Lett. D 24, 1550020 (2015).ADSCrossRefGoogle Scholar
  21. 21.
    M. Sharif and S. Iftikhar, Astrophys. Space Sci. 356, 89 (2015).ADSCrossRefGoogle Scholar
  22. 22.
    R. Tharanath, J. Suresh, and C. Kuriakose, Gen. Relativ. Gravit. 47, 46 (2015).ADSCrossRefGoogle Scholar
  23. 23.
    S. Chandrasekhar, The Mathematical Theory of Black Holes (Clarendon, Oxford, 1992).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of the Punjab, Quaid-e-Azam CampusLahorePakistan

Personalised recommendations