Skip to main content
Log in

Radiation of a Cascade near a Plane Interface and in a Planar Layer

  • Nuclei, Particles, Fields, Gravitation, and Astrophysics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

In order to detect cosmic rays and ultrahigh-energy neutrinos, a number of experiments based on the detection of radio radiation of cascades initiated by these particles in dense media such as ground ice massifs or lunar regolith have been developed. In most of the experiments, radio radiation is detected at the emission to the atmosphere or cosmic space rather than in a dense medium. Consequently, it is necessary to calculate the radiation of a cascade taking into account an interface between two media. This problem is usually solved numerically by the Monte Carlo method. A simple analytical expression for a radiation field in the wave zone of the less dense medium has been obtained for the case of development of the cascade in the dense medium and the crossing of the interface between two media by radiation. The effect of the third, additional medium on the radiation field of the cascade has also been considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Askaryan, Sov. Phys. JETP 14, 441 (1961).

    Google Scholar 

  2. E. Zas, F. Halzen, and T. Stanev, Phys. Rev. D 45, 362 (1992).

    Article  ADS  Google Scholar 

  3. N. G. Lehtinen, P. W. Gorham, A. R. Jacobson, et al., Phys. Rev. D 69, 013008 (2004).

    Article  ADS  Google Scholar 

  4. I. Kravchenko, S. Hussain, D. Seckel, et al., Phys. Rev. D 85, 062004 (2012).

    Article  ADS  Google Scholar 

  5. P. W. Gorham, P. Allison, B. M. Baughman, et al., Phys. Rev. D 82, 022004 (2010).

    Article  ADS  Google Scholar 

  6. P. Allison, J. Auffenberg, R. Bard, et al., Astropart. Phys. 70, 62 (2015).

    Article  ADS  Google Scholar 

  7. S. W. Barwick, E. C. Berg, D. Z. Besson, et al., Astropart. Phys. 70, 12 (2015).

    Article  ADS  Google Scholar 

  8. P. W. Gorham, C. L. Hebert, K. M. Liewer, et al., Phys. Rev. Lett. 93, 041101 (2004).

    Article  ADS  Google Scholar 

  9. J. D. Bray, R. D. Ekers, P. Roberts, et al., Phys. Rev. D 91, 063002 (2015).

    Article  ADS  Google Scholar 

  10. O. Scholten, S. Buitink, J. Bacelar, et al., Phys. Rev. Lett. 103, 191301 (2009).

    Article  ADS  Google Scholar 

  11. M. Mevius, S. Buitink, H. Falke, et al., Nucl. Instrum. Methods Phys. Res. A 662, S26 (2012).

    Article  Google Scholar 

  12. R. Schilizzi, P. Dewdney, and T. Lazio, Proc. SPIE 7733, 773318 (2010).

    Article  Google Scholar 

  13. G. A. Gusev, B. N. Lomonosov, K. M. Pichkhadze, N. G. Polukhina, V. A. Ryabov, T. Saito, V. K. Sysoev, E. L. Feinberg, V. A. Tsarev, and V. A. Chechin, Cosmic Res. 44, 19 (2006).

    Article  ADS  Google Scholar 

  14. G. A. Gusev, B. N. Lomonosov, K. M. Pichkhadze, N. G. Polukhina, V. A. Ryabov, T. Saito, V. K. Sysoev, E. L. Feinberg, V. A. Tsarev, and V. A. Chechin, Dokl. Phys. 51, 22 (2006).

    Article  ADS  Google Scholar 

  15. V. A. Ryabov, V. A. Chechin, G. A. Gusev, et al., Adv. Space Res. 58, 464 (2016).

    Article  ADS  Google Scholar 

  16. G. A. Gusev, B. N. Lomonosov, V. A. Ryabov, and V. A. Chechin, Phys. Usp. 53, 915 (2010).

    Article  ADS  Google Scholar 

  17. J. Alvarez-Muniz and E. Zas, Phys. Lett. B 434, 396 (1998).

    Article  ADS  Google Scholar 

  18. J. Alvarez-Muniz, E. Marques, R. A. Vazquez, et al., Phys. Rev. D 68, 043001 (2003).

    Article  ADS  Google Scholar 

  19. J. Alvarez-Muniz, E. Marques, R. Vazquez, et al., Phys. Rev. D 74, 023007 (2006).

    Article  ADS  Google Scholar 

  20. J. Alvarez-Muniz, A. Romero-Wolf, and E. Zas, Phys. Rev. D 84, 103003 (2011).

    Article  ADS  Google Scholar 

  21. J. Alvarez-Muniz, W. R. Carvalho, M. Tueros, et al., Astropart. Phys. 35, 287 (2012).

    Article  ADS  Google Scholar 

  22. V. L. Ginzburg and V. N. Tsytovich, Transition Radiation and Transition Scattering (Nauka, Moscow, 1984; Adam Hilger, Bristol, New York, 1990).

    Google Scholar 

  23. E. L. Feinberg, The Propagation of Radiowaves along the Surface of the Earth (Nauka, Moscow, 1999) [in Russian].

    Google Scholar 

  24. Ph. Frank and R. Mises, The Differential and Integral Equations of Mechanics and Physics (Mary Rosenberg, New York, 1943; ONTI, Moscow 1937), Vol. 2.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Ryabov.

Additional information

Original Russian Text © V.A. Ryabov, V.A. Chechin, 2018, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 153, No. 1, pp. 45–53.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryabov, V.A., Chechin, V.A. Radiation of a Cascade near a Plane Interface and in a Planar Layer. J. Exp. Theor. Phys. 126, 35–43 (2018). https://doi.org/10.1134/S1063776118010077

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776118010077

Navigation