Journal of Experimental and Theoretical Physics

, Volume 126, Issue 1, pp 126–131 | Cite as

On the Structure of the Mixing Zone at an Unstable Contact Boundary

Statistical, Nonlinear, and Soft Matter Physics
  • 19 Downloads

Abstract

The interface between two media of different densities (contact boundary) moving with an acceleration directed from the less dense medium to the more dense one is unstable (Rayleigh–Taylor instability) [1, 2]. The initial perturbations of the interface grow indefinitely and, as a result, a medium mixing zone growing with time is formed at the interface. The structure of such a mixing zone at gas–gas and gas–liquid interfaces is discussed on the basis of laboratory experiments on shock tubes of various types. It is concluded that the regions of turbulent and laminar flows are combined in the mixing zone.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lord Rayleigh, Proc. London Math. Soc. 14, 70 (1883).MathSciNetGoogle Scholar
  2. 2.
    G. I. Taylor, Proc. R. Soc. London A 201, 192 (1950).ADSCrossRefGoogle Scholar
  3. 3.
    R. D. Richtmyer, Comm. Pure Appl. Math. 13, 297 (1960).MathSciNetCrossRefGoogle Scholar
  4. 4.
    E. E. Meshkov, Izv. Akad. Nauk SSSR, Ser. Mekh. Zhidk. Gaza, No. 5, 151 (1969).Google Scholar
  5. 5.
    A. S. Kozyrev, V. A. Alexandrov, and N. A. Popov, Nature 275, 476 (1978).ADSCrossRefGoogle Scholar
  6. 6.
    E. I. Zababakhin, Sov. Phys. JETP 22, 446 (1966).ADSGoogle Scholar
  7. 7.
    V. A. Andronov, S. M. Bakhrakh, E. E. Meshkov, et al., Sov. Phys. JETP 44, 424 (1976).ADSGoogle Scholar
  8. 8.
    V. A. Andronov, S. M. Bakhrakh, E. E. Meshkov, et al., Sov. Phys. Dokl. 27, 393 (1982).ADSGoogle Scholar
  9. 9.
    E. E. Meshkov, V. V. Nikiforov, and A. I. Tolshmyakov, Fiz. Goreniya Vzryva, No. 3, 71 (1990).ADSGoogle Scholar
  10. 10.
    A. I. Abakumov, V. Yu. Fadeev, S. I. Kholkin et al., in Proceedings of the 5th International Workshop on Compressible Turbulent Mixing IWPCTM, Stony Brook, USA, 1995, p. 118.Google Scholar
  11. 11.
    E. E. Meshkov and V. V. Nikiforov, in High Energy Densities, Collection of Articles (Sarov, 1997), p. 188 [in Russian].Google Scholar
  12. 12.
    E. E. Meshkov, in 65 Years of VNIEF. Physics and Engineering of High Energy Densities, Collection of Articles (Sarov, 2011), Vol. 2, p. 298 [in Russian].Google Scholar
  13. 13.
    E. E. Meshkov, in Proceedings of the 27th International Symposium on Shock Waves ISSW, St. Petersburg, Russia, 2009, p. 6.Google Scholar
  14. 14.
    V. Andronov, I. Zhidov, E. Meshkov, et al., LANL Report No. LA-12896 (1995).Google Scholar
  15. 15.
    E. E. Meshkov, Phil. Trans. R. Soc. London A 371, 20120288 (2013).ADSCrossRefGoogle Scholar
  16. 16.
    E. E. Meshkov, Studies of Hydrodynamical Instabilities in Laboratory Experiments (Sarov, 2006) [in Russian].Google Scholar
  17. 17.
    O. I. Volchenko, I. G. Zhidov, B. A. Klopov, et al., Inventor’s Certificate No. 1026154, Byull. Izobret. No. 24 (1983).Google Scholar
  18. 18.
    I. G. Zhidov, E. E. Meshkov, and N. V. Nevmerzhitskii, PhIAS Preprint No. 56 (Lebedev Phys. Inst. Acad. Sci., Moscow, 1990), p. 52.Google Scholar
  19. 19.
    E. E. Meshkov, N. V. Nevmerzhitsky, V. G. Rogachev, et al., in Proceedings of the 4th International Workshop on Compressible Turbulent Mixing IWPCTM, Cambridge, England, Ed. by P. F. Linden, D. L. Youngs, and S. B. Dalziel (1993), p. 578.Google Scholar
  20. 20.
    O. I. Volchenko, I. G. Zhidov, E. E. Meshkov, et al., Sov. Tech. Phys. Lett. 15, 19 (1989).Google Scholar
  21. 21.
    E. E. Meshkov, N. V. Nevmerzhitsky, V. A. Pavlovskii, et al., in Proceedings of the 5th International Workshop on Compressible Turbulent Mixing, Stony Brook, New York, USA, 1995, p. 243.Google Scholar
  22. 22.
    E. E. Meshkov, N. V. Nevmerzhitsky, E. Senkovsky, et al., in Proceedings of the 7th International Workshop on Compressible Turbulent Mixing, St. Petersburg, Russia, 2001, p. 95.Google Scholar
  23. 23.
    I. G. Zhidov, E. E. Meshkov, N. V. Nevmerzhitski, I. G. Pylev’, and E. A. Sotskov, Tech. Phys. Lett. 28, 87 (2002).ADSCrossRefGoogle Scholar
  24. 24.
    M. V. Bliznetsov, I. G. Zhidov, E. E. Meshkov, N. V. Nevmerzhitski, E. D. Sen’kovski, and E. A. Sotskov, Tech. Phys. Lett. 28, 80 (2002).ADSCrossRefGoogle Scholar
  25. 25.
    Yu. B. Bazarov, A. E. Levushov, E. E. Meshkov, et al., in Proceedings of the International Conference on Fluxes and Structures in Fluids, Moscow, 2005, p. 13.Google Scholar
  26. 26.
    V. K. Baranov, A. B. Georgievskaya, D. E. Guk, D. N. Zamyslov, S. A. Makarov, E. E. Meshkov, and S. N. Stepushkin, Tech. Phys. Lett. 42, 826 (2016).ADSCrossRefGoogle Scholar
  27. 27.
    Yu. Kucherenko, L. Shibarshov, V. Chitaikin et al., in Proceedings of the 3rd International Workshop on Compressible Turbulent Mixing, Abbey of Royaumont, France, 1991, p. 427.Google Scholar
  28. 28.
    E. E. Meshkov, D. E. Meshkov, and V. S. Sivolgin, in Proceedings of the 10th International Workshop on Compressible Turbulent Mixing, Paris, France, 2006, p. 238.Google Scholar
  29. 29.
    S. Nogueira, M. L. Riethmuler, J. B. L. M. Campos, et al., Chem. Eng. Sci. 61, 845 (2006).CrossRefGoogle Scholar
  30. 30.
    Y. B. Bazarov, S. E. Kuratov, D. E. Meshkov, et al., Phys. Scripta 142, 014018 (2010).CrossRefGoogle Scholar
  31. 31.
    G. I. Taylor, Proc. R. Soc. London A 124, 243 (1929).ADSCrossRefGoogle Scholar
  32. 32.
    R. Narasimha and K. R. Sreenivasan, J. Fluid Mech. 61, 417 (1973).ADSCrossRefGoogle Scholar
  33. 33.
    H. F. Robey, Y. Zhou, A. C. Buckingham, et al., Phys. Plasmas 10, 614 (2003).ADSCrossRefGoogle Scholar
  34. 34.
    S. I. Abarzhi, Europhys. Lett. 91, 12867 (2010).CrossRefGoogle Scholar
  35. 35.
    S. I. Abarzhi, A. Gorobets, and K. R. Sreenivasan, Phys. Fluids 17, 081705 (2005).ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    S. I. Abarzhi, Phil. Trans. R. Soc. London A 368, 1809 (2010).ADSCrossRefGoogle Scholar
  37. 37.
    S. I. Abarzhi and R. Rosner, Phys. Scripta 142, 014012 (2010).CrossRefGoogle Scholar
  38. 38.
    S. I. Anisimov, R. P. Drake, S. Gauthier, et al., Phil. Trans. R. Soc. London A 371, 20130266 (2013).ADSCrossRefGoogle Scholar
  39. 39.
    K. R. Sreenivasan and S. I. Abarzhi, Phil. Trans. R. Soc. London A 371, 20130167 (2013).CrossRefGoogle Scholar
  40. 40.
    R. I. Kanygin, A. D. Kashcheev, A. Yu. Kudryavtsev, et al., in Proceedings of the 11th All-Russia Youth School on Mathematics and Mathematical Simulation, Sarov, 2017, p. 157.Google Scholar
  41. 41.
    G. K. Batchelor, J. Fluid Mech. 184, 399 (1987).ADSCrossRefGoogle Scholar
  42. 42.
    E. E. Meshkov and N. V. Nevmerzhitskii, Tech. Phys. Lett. 28, 323 (2002).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Sarov Physical–Technical InstituteNational Research Nuclear University “MEPhI,”Sarov, Nizhegorodskaya oblastRussia

Personalised recommendations