Skip to main content
Log in

Dynamics of Liquid Lithium Atoms. Pseudopotential and EAM-Type Potentials

  • Solids and Liquids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

It is generally accepted that the complicated character of the interparticle interaction in liquid metals is reproduced most correctly by many-particle potentials of the EAM-type (embedded atom model) interparticle interaction. It is shown that in the case of liquid lithium near the melting temperature (Tm = 453.65 K), the spherical pseudopotential provides a better agreement with experimental data on elastic and inelastic X-ray scattering as compared to the known EAM potentials. The calculations of the dynamic structural factor and spectral densities of the longitudinal and transverse atomic currents lead to the conclusion that although the pseudopotential and EAM potentials generate a certain qualitative correspondence in the features of collective dynamics, the interparticle interaction of the spherical type reproduces correctly the general form of the dynamic structure factor in a certain wavenumber range, as well as the dispersion relation for collective excitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. H. March, Liquid Metals: Concepts and Theory (Cambridge Univ. Press, Cambridge, 1990).

    Book  Google Scholar 

  2. A. V. Mokshin, R. M. Khusnutdinov, A. R. Akhmerova, and A. R. Musabirova, JETP Lett. 106 (6), 366 (2017).

    Article  ADS  Google Scholar 

  3. W.-C. Pilgrim and Chr. Morkel, J. Phys.: Condens. Matter 18, R585 (2006).

    Google Scholar 

  4. N. W. Ashcroft, Phys. Lett. 23, 48 (1966).

    Article  ADS  Google Scholar 

  5. Handbook of Thermodynamic and Transport Properties of Alkali Metals (Blackwell Scientific, Oxford, 1991).

  6. N. M. Blagoveshchenskii, V. A. Morozov, A. G. Novikov, M. A. Pashnev, V. V. Savostin, A. L. Shimkevich, and O. V. Sobolev, J. Phys.: Condens. Matter 20, 104201 (2008).

    ADS  Google Scholar 

  7. A. Fraile, S. Cuesta-López, R. Iglesias, A. Caro, and J. M. Perlado, J. Nucl. Mater. 440, 98 (2013).

    Article  ADS  Google Scholar 

  8. K. Hoshino and W. H. Young, J. Phys. F 16, 1659 (1986).

    Article  ADS  Google Scholar 

  9. T. Das and R. N. Joarder, J. Non-Cryst. Solids 117, 583 (1990).

    Article  ADS  Google Scholar 

  10. W. Jank and J. Hafner, J. Phys.: Codens. Matter 2, 5065 (1990).

    ADS  Google Scholar 

  11. A. B. Walker and R. Taylor, J. Phys.: Condens. Matter 2, 9481 (1990).

    ADS  Google Scholar 

  12. L. E. González, D. J. González, M. Silbert, and J. A. Alonso, J. Phys.: Condens. Matter 5, 4283 (1993).

    ADS  Google Scholar 

  13. L. E. González, D. J. González, and J. M. López, J. Phys.: Condens. Matter 13, 7801 (2001).

    ADS  Google Scholar 

  14. D. K. Belashchenko and O. I. Ostrovskii, High Temp. 47, 211 (2009).

    Article  Google Scholar 

  15. D. K. Belashchenko, Inorg. Mater. 48, 79 (2012).

    Article  Google Scholar 

  16. M. I. Baskes, Phys. Rev. B 46, 2727 (1992).

    Article  ADS  Google Scholar 

  17. T. Scopigno, G. Ruocco, and F. Sette, Rev. Mod. Phys. 77, 881 (2005).

    Article  ADS  Google Scholar 

  18. A. V. Mokshin, R. M. Yulmetev, R. M. Khusnutdinoff, and P. Hanggi, J. Exp. Theor. Phys. 103, 841 (2006).

    Article  ADS  Google Scholar 

  19. J. P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic Press, New York, 2006).

    MATH  Google Scholar 

  20. R. M. Khusnutdinoff, A. V. Mokshin, B. A. Klumov, R. E. Ryltsev, and N. M. Chtchelkatchev, J. Exp. Theor. Phys. 123, 265 (2016).

    Article  ADS  Google Scholar 

  21. Y. Waseda, The Structure of Non-Crystalline Materials: Liquids and Amorphous Solids (McGraw-Hill, New York, 1980).

    Google Scholar 

  22. A. V. Mokshin, R. M. Khusnutdinoff, A. G. Novikov, N. M. Blagoveshchenskii, and A. V. Puchkov, J. Exp. Theor. Phys. 121, 828 (2015).

    Article  ADS  Google Scholar 

  23. T. Scopigno, U. Balucani, G. Ruocco, and F. Sette, J. Phys.: Condens. Matter 12, 8009 (2000).

    ADS  Google Scholar 

  24. W. Montfrooij and I. de Schepper, Excitations in Simple Liquids, Liquid Metals and Superfluidss (Oxford Univ. Press, New York, 2010).

    Google Scholar 

  25. R. M. Khusnutdinoff and A. V. Mokshin, JETP Lett. 100, 39 (2014).

    Article  ADS  Google Scholar 

  26. J. P. Boon and S. Yip, Molecular Hydrodynamics (McGraw-Hill, New York, 1980).

    Google Scholar 

  27. R. M. Khusnutdinoff, A. V. Mokshin, S. G. Menshikova, A. L. Beltyukov, and V. I. Ladyanov, J. Exp. Theor. Phys. 122, 859 (2016).

    Article  ADS  Google Scholar 

  28. C. Yang, M. T. Dove, V. V. Brazhkin, and K. Trachenko, Phys. Rev. Lett. 118, 215502 (2017).

    Article  ADS  Google Scholar 

  29. A. V. Mokshin, A. V. Chvanova, and R. M. Khusnutdinoff, Theor. Math. Phys. 171, 541 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Khusnutdinoff.

Additional information

Original Russian Text © R.M. Khusnutdinoff, B.N. Galimzyanov, A.V. Mokshin, 2018, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 153, No. 1, pp. 100–107.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khusnutdinoff, R.M., Galimzyanov, B.N. & Mokshin, A.V. Dynamics of Liquid Lithium Atoms. Pseudopotential and EAM-Type Potentials. J. Exp. Theor. Phys. 126, 83–89 (2018). https://doi.org/10.1134/S1063776118010041

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776118010041

Navigation