Journal of Experimental and Theoretical Physics

, Volume 126, Issue 1, pp 90–105 | Cite as

Identifying Two-Dimensional Z2 Antiferromagnetic Topological Insulators

  • F. Bègue
  • P. Pujol
  • R. Ramazashvili
Order, Disorder, and Phase Transition in Condensed System


We revisit the question of whether a two-dimensional topological insulator may arise in a commensurate Néel antiferromagnet, where staggered magnetization breaks the symmetry with respect to both elementary translation and time reversal, but retains their product as a symmetry. In contrast to the so-called Z2 topological insulators, an exhaustive characterization of antiferromagnetic topological phases with the help of topological invariants has been missing. We analyze a simple model of an antiferromagnetic topological insulator and chart its phase diagram, using a recently proposed criterion for centrosymmetric systems [13]. We then adapt two methods, originally designed for paramagnetic systems, and make antiferromagnetic topological phases manifest. The proposed methods apply far beyond the particular examples treated in this work, and admit straightforward generalization. We illustrate this by two examples of non-centrosymmetric systems, where no simple criteria have been known to identify topological phases. We also present, for some cases, an explicit construction of edge states in an antiferromagnetic topological insulator.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).ADSCrossRefGoogle Scholar
  2. 2.
    X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).ADSCrossRefGoogle Scholar
  3. 3.
    C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).ADSCrossRefGoogle Scholar
  4. 4.
    C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).ADSCrossRefGoogle Scholar
  5. 5.
    C. Xu and J. E. Moore, Phys. Rev. B 73, 045322 (2006).ADSCrossRefGoogle Scholar
  6. 6.
    C. Wu, B. A. Bernevig, and S.-C. Zhang, Phys. Rev. Lett. 96, 106401 (2006).ADSCrossRefGoogle Scholar
  7. 7.
    B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science 314, 1757 (2006).ADSCrossRefGoogle Scholar
  8. 8.
    R. S. K. Mong, A. M. Essin, and J. E. Moore, Phys. Rev. B 81, 245209 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    C.-X. Liu, arXiv:1304.6455 (2013).Google Scholar
  10. 10.
    R.-X. Zhang and C.-X. Liu, Phys. Rev. B 91, 115317 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    C.-X. Liu, R.-X. Zhang, and B. K. van Leeuwen, Phys. Rev. B 90, 085304 (2014).ADSCrossRefGoogle Scholar
  12. 12.
    C. Fang and L. Fu, Phys. Rev. B 91, 161105 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    C. Fang, M. J. Gilbert, and B. A. Bernevig, Phys. Rev. B 88, 085406 (2013).ADSCrossRefGoogle Scholar
  14. 14.
    L. Fu, Phys. Rev. Lett. 106, 106802 (2011).ADSCrossRefGoogle Scholar
  15. 15.
    M. Kargarian and G. A. Fiete, Phys. Rev. Lett. 110, 156403 (2013).ADSCrossRefGoogle Scholar
  16. 16.
    J. Liu, W. Duan, and L. Fu, Phys. Rev. B 88, 241303 (2013).ADSCrossRefGoogle Scholar
  17. 17.
    M. Serbyn and L. Fu, Phys. Rev. B 90, 035402 (2014).ADSCrossRefGoogle Scholar
  18. 18.
    P. Jadaun, D. Xiao, Q. Niu, and S. K. Banerjee, Phys. Rev. B 88, 085110 (2013).ADSCrossRefGoogle Scholar
  19. 19.
    L. Fu and C. L. Kane, Phys. Rev. B 76, 045302 (2007).ADSCrossRefGoogle Scholar
  20. 20.
    A. A. Soluyanov and D. Vanderbilt, Phys. Rev. B 85, 115415 (2012).ADSCrossRefGoogle Scholar
  21. 21.
    R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651 (1993).ADSCrossRefGoogle Scholar
  22. 22.
    R. Yu et al., Phys. Rev. B 84, 075119 (2011).ADSCrossRefGoogle Scholar
  23. 23.
    A. A. Soluyanov and D. Vanderbilt, Phys. Rev. B 83, 235401 (2011).ADSCrossRefGoogle Scholar
  24. 24.
    N. I. Kulikov and V. V. Tugushev, Phys. Usp. 27, 954 (1984).ADSCrossRefGoogle Scholar
  25. 25.
    R. Ramazashvili, Phys. Rev. Lett. 101, 137202 (2008).ADSCrossRefGoogle Scholar
  26. 26.
    R. Ramazashvili, Phys. Rev. B 79, 184432 (2009).ADSCrossRefGoogle Scholar
  27. 27.
    H. Guo, S. Feng and S.-Q. Shen, Phys. Rev. B 83, 045114 (2011).ADSCrossRefGoogle Scholar
  28. 28.
    M. Fruchart, D. Carpentier, and K. Gawedzki, Europhys. Lett. 106, 60002 (2014).ADSCrossRefGoogle Scholar
  29. 29.
    L. Fu and C. L. Kane, Phys. Rev. B 74, 195312 (2006).ADSCrossRefGoogle Scholar
  30. 30.
    M. Konig et al., J. Phys. Soc. Jpn. 77, 031007 (2008).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Laboratoire de Physique Théorique, IRSAMCUniversité de Toulouse, CNRS, UPSToulouseFrance

Personalised recommendations