Skip to main content
Log in

Analysis of the Effect of Different Initial States and Structural Defects on the Characteristics of the Nonequilibrium Critical Behavior of the 3D Ising Model

  • Order, Disorder, and Phase Transition in Condensed System
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The effect of different initial values m0 of magnetization and structural defects on the nonequilibrium critical behavior of the 3D Ising model have been analyzed numerically using the Monte Carlo method. Analysis of the two-time dependences of the autocorrelation function and dynamic susceptibility has revealed a substantial influence of the initial states on the aging effects that are characterized by anomalous retardation of relaxation and correlation in the system upon an increase in the waiting time. We have studied the violations of the fluctuation–dissipation theorem and calculated the limiting fluctuation–dissipation ratio. It is shown that in the nonequilibrium critical behavior of the 3D Ising model, two universality subclasses corresponding to the evolution of the system from the high-temperature (with m0 = 0) and low-temperature (with m0 = 1) initial states with the values of the limiting fluctuation–dissipation ratio typical of these states can be singled out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Vincent, J. Hammann, M. Ocio, J. P. Bouchaud, and L. F. Cugliandolo, Lect. Notes Phys. 492, 184 (1997).

    Article  ADS  Google Scholar 

  2. L. Berthier and J. Kurchan, Nat. Phys. 9, 310 (2013).

    Article  Google Scholar 

  3. P. Calabrese and A. Gambassi, J. Phys. A 38, R133 (2005).

    Article  ADS  Google Scholar 

  4. V. V. Prudnikov, P. V. Prudnikov, and M. V. Mamonova, Phys. Usp. 60 (2017, in press).

    Google Scholar 

  5. L. F. Cugliandolo, D. S. Dean, and J. Kurchan, Phys. Rev. Lett. 79, 2168 (1997).

    Article  ADS  Google Scholar 

  6. V. V. Prudnikov, P. V. Prudnikov, and E. A. Pospelov, JETP Lett. 98, 619 (2013).

    Article  Google Scholar 

  7. V. V. Prudnikov, P. V. Prudnikov, and E. A. Pospelov, J. Exp. Theor. Phys. 118, 401 (2014).

    Article  ADS  Google Scholar 

  8. V. V. Prudnikov, P. V. Prudnikov, E. A. Pospelov, and A. N. Vakilov, Phys. Lett. A 379, 774 (2015).

    Article  Google Scholar 

  9. P. Calabrese, A. Gambassi, and F. Krzakala, J. Stat. Mech., P06016 (2006).

    Google Scholar 

  10. P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49, 435 (1977).

    Article  ADS  Google Scholar 

  11. V. V. Prudnikov, P. V. Prudnikov, E. A. Pospelov, and P. N. Malyarenko, JETP Lett. 102, 167 (2015).

    Article  ADS  Google Scholar 

  12. V. V. Prudnikov, P. V. Prudnikov, and E. A. Pospelov, J. Stat. Mech. 043303 (2016).

    Google Scholar 

  13. W. Janke, Lect. Notes Phys. 739, 79 (2008).

    Article  ADS  Google Scholar 

  14. P. V. Prudnikov, V. V. Prudnikov, E. A. Pospelov, P. N. Malyarenko, and A. N. Vakilov, Progr. Theor. Exp. Phys. 2015, 053A01 (2015).

    Article  Google Scholar 

  15. V. V. Prudnikov and A. N. Vakilov, JETP Lett. 55, 741 (1992); Sov. Phys. JETP 76, 469 (1993).

    ADS  Google Scholar 

  16. A. K. Murtazaev, I. K. Kamilov, and A. B. Babaev, J. Exp. Theor. Phys. 99, 1201 (2004).

    Article  ADS  Google Scholar 

  17. A. M. Ferrenberg and D. P. Landau, Phys. Rev. B 44, 5081 (1991).

    Article  ADS  Google Scholar 

  18. V. V. Prudnikov, P. V. Prudnikov, and A. N. Vakilov, Description of Non-equilibrium Critical Behavior of Structureally Disordered Systems by Theoretical Methods (Nauka, Moscow, 2013) [in Russian].

    Google Scholar 

  19. V. V. Prudnikov, P. V. Prudnikov, A. S. Krinitsyn, A. N. Vakilov, E. A. Pospelov, and M. V. Rychkov, Phys. Rev. E 81, 011130 (2010).

    Article  ADS  Google Scholar 

  20. N. K. Janssen, B. Schaub, and B. Schmittmann, Z. Phys. B 73, 539 (1989).

    Article  ADS  Google Scholar 

  21. V. V. Prudnikov, P. V. Prudnikov, I. A. Kalashnikov, and S. S. Tsirkin, J. Exp. Theor. Phys. 106, 1095 (2008).

    Article  ADS  Google Scholar 

  22. L. Schülke and B. Zheng, Phys. Lett. A 215, 81 (1996).

    Article  ADS  Google Scholar 

  23. V. V. Prudnikov, P. V. Prudnikov, B. Zheng, S. V. Dorofeev, and V. Yu. Kolesnikov, Progr. Theor. Phys. 117, 973 (2007).

    Article  ADS  Google Scholar 

  24. V. V. Prudnikov, P. V. Prudnikov, I. A. Kalashnikov, and M. V. Rychkov, J. Exp. Theor. Phys. 110, 253 (2010).

    Article  ADS  Google Scholar 

  25. M. Henkel and M. Pleimling, in Non-Equilibrium Phase Transitions (Springer, Heidelberg, 2010), Vol. 2, p. 544.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Prudnikov.

Additional information

Original Russian Text © V.V. Prudnikov, P.V. Prudnikov, P.N. Malyarenko, 2017, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 152, No. 1, pp. 1293–1308.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prudnikov, V.V., Prudnikov, P.V. & Malyarenko, P.N. Analysis of the Effect of Different Initial States and Structural Defects on the Characteristics of the Nonequilibrium Critical Behavior of the 3D Ising Model. J. Exp. Theor. Phys. 125, 1102–1115 (2017). https://doi.org/10.1134/S1063776117120196

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776117120196

Navigation