Skip to main content
Log in

X-Ray Reflectometry of DMPS Monolayers on a Water Substrate

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The molecular structure of dimyristoyl phosphatidylserine (DMPS) monolayers on a water substrate in different phase states has been investigated by X-ray reflectometry with a photon energy of ~8 keV. According to the experimental data, the transition from a two-dimensional expanded liquid state to a solid gel state (liquid crystal) accompanied by the ordering of the hydrocarbon tails C14H27 of the DMPS molecule occurs in the monolayer as the surface pressure rises. The monolayer thickness is 20 ± 3 and 28 ± 2 Å in the liquid and solid phases, respectively, with the deflection angle of the molecular tail axis from the normal to the surface in the gel phase being 26° ± 8°. At least a twofold decrease in the degree of hydration of the polar lipid groups also occurs under two-dimensional monolayer compression. The reflectometry data have been analyzed using two approaches: under the assumption about the presence of two layers with different electron densities in the monolayer and without any assumptions about the transverse surface structure. Both approaches demonstrate satisfactory agreement between themselves in describing the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1995; Pergamon, Oxford, 1980).

    Google Scholar 

  2. V. M. Kaganer, H. Möhwald, and P. Dutta, Rev. Mod. Phys. 71, 779 (1999).

    Article  ADS  Google Scholar 

  3. Yu. A. Ermakov, Biochemistry (Moscow) Suppl. Ser. A: Membr. Cell Biol. 5, 379 (2011).

    Article  Google Scholar 

  4. Y. A. Ermakov, K. Kamaraju, K. Sengupta, and S. Sukharev, Biophys. J. 98, 1018 (2010).

    Article  ADS  Google Scholar 

  5. H. Mohwald, Ann. Rev. Phys. Chem. 41, 441 (1990).

    Article  ADS  Google Scholar 

  6. H. Binder, Appl. Spectrosc. Rev. 38, 15 (2003).

    Article  ADS  Google Scholar 

  7. A. M. Tikhonov, JETP Lett. 92, 356 (2010).

    Article  ADS  Google Scholar 

  8. V. E. Asadchikov, V. V. Volkov, Yu. O. Volkov, K. A. Dembo, I. V. Kozhevnikov, B. S. Roshchin, D. A. Frolov, and A. M. Tikhonov, JETP Lett. 94, 585 (2011).

    Article  ADS  Google Scholar 

  9. H. M. McConnell, Ann. Rev. Phys. Chem. 42, 171 (1991).

    Article  ADS  Google Scholar 

  10. V. E. Asadchikov, V. G. Babak, A. V. Buzmakov, Yu. P. Dorokhin, I. P. Glagolev, Yu. V. Zanevskii, V. N. Zryuev, Yu. S. Krivonosov, V. F. Mamich, L. A. Moseiko, N. I. Moseiko, B. V. Mchedlishvili, S. V. Savel’ev, R. A. Senin, L. P. Smykov, et al., Instrum. Exp. Tech. 48, 364 (2005).

    Article  Google Scholar 

  11. A. Gibaud, G. Vignaud, and S. K. Sinha, Acta Crystallogr. A 49, 642 (1993).

    Article  Google Scholar 

  12. M. L. Schlossman, M. Li, D. M. Mitrinovic, and A. M. Tikhonov, High Perform. Polym. 12, 551 (2000).

    Article  Google Scholar 

  13. L. Hanley, Y. Choi, E. R. Fuoco, F. A. Akin, M. B. J. Wijesundara, M. Li, A. M. Tikhonov, and M. L. Schlossman, Nucl. Instrum. Methods Phys. Res. B 203, 116 (2003).

    Article  ADS  Google Scholar 

  14. A. M. Tikhonov, J. Phys. Chem. C 111, 930 (2007).

    Article  Google Scholar 

  15. A. M. Tikhonov, J. Chem. Phys. 130, 024512 (2009).

    Article  ADS  Google Scholar 

  16. A. M. Tikhonov, V. E. Asadchikov, and Yu. O. Volkov, JETP Lett. 102, 478 (2015).

    Article  ADS  Google Scholar 

  17. A. M. Tikhonov, J. Phys. Chem. B 110, 2746 (2006).

    Article  Google Scholar 

  18. A. M. Tikhonov and M. L. Schlossman, J. Phys.: Condens. Matter 19, 375101 (2007).

    Google Scholar 

  19. A. M. Tikhonov, V. E. Asadchikov, Yu. O. Volkov, B. S. Roshchin, I. S. Monakhov, and I. S. Smirnov, JETP Lett. 104, 873 (2016).

    Article  ADS  Google Scholar 

  20. S. K. Sinha, E. B. Sirota, S. Garoff, and H. B. Stanley, Phys. Rev. B 38, 2297 (1988).

    Article  ADS  Google Scholar 

  21. F. P. Buff, R. A. Lovett, and F. H. Stillinger, Phys. Rev. Lett. 15, 621 (1965).

    Article  ADS  Google Scholar 

  22. J. Daillant, L. Bosio, B. Harzallah, and J. J. Benattar, J. Phys. II 1, 149 (1991).

    Google Scholar 

  23. J. D. Weeks, J. Chem. Phys. 67, 3106 (1977).

    Article  ADS  Google Scholar 

  24. A. Braslau, M. Deutsch, P. S. Pershan, A. H. Weiss, J. Als-Nielsen, and J. Bohr, Phys. Rev. Lett. 54, 114 (1985).

    Article  ADS  Google Scholar 

  25. A. Braslau, P. S. Pershan, G. Swislow, B. M. Ocko, and J. Als-Nielsen, Phys. Rev. A 38, 2457 (1988).

    Article  ADS  Google Scholar 

  26. D. K. Schwartz, M. L. Schlossman, E. H. Kawamoto, G. J. Kellogg, P. S. Pershan, and B. M. Ocko, Phys. Rev. A 41, 5687 (1990).

    Article  ADS  Google Scholar 

  27. D. M. Mitrinovic, A. M. Tikhonov, M. Li, Z. Huang, and M. L. Schlossman, Phys. Rev. Lett. 85, 582 (2000).

    Article  ADS  Google Scholar 

  28. A. M. Tikhonov, J. Chem. Phys. 124, 164704 (2006).

    Article  ADS  Google Scholar 

  29. I. V. Kozhevnikov, Nucl. Instrum. Methods Phys. Res. A 508, 519 (2003).

    Article  ADS  Google Scholar 

  30. I. V. Kozhevnikov, L. Peverini, and E. Ziegler, Phys. Rev. B 85, 125439 (2012).

    Article  ADS  Google Scholar 

  31. R. Kanwal, Generalized Functions: Theory and Technique (Birkhäuser, Basel, 1998).

    MATH  Google Scholar 

  32. L. G. Parratt, Phys. Rev. 95, 359 (1954).

    Article  ADS  Google Scholar 

  33. J. Nocedal and S. Wright, Numerical Optimization (Springer, Berlin, 2006).

    MATH  Google Scholar 

  34. B. L. Henke, E. M. Gullikson, and J. C. Davis, At. Data Nucl. Data Tables 54, 181 (1993).

    Article  ADS  Google Scholar 

  35. L. Nevot and P. Croce, Rev. Phys. Appl. 15, 761 (1980).

    Article  Google Scholar 

  36. O. Gilev, V. Asadchikov, A. Duparré, N. Havronin, I. Kozhevnikov, Yu. Krivonosov, S. Kuznetsov, V. Mikerov, V. Ostashev, and V. Tukarev, Proc. SPIE 4099, 279 (2000).

    Article  ADS  Google Scholar 

  37. V. E. Asadchikov, I. V. Kozhevnikov, Yu. S. Krivonosov, R. Mercier, T. H. Metzger, C. Morawe, and E. Ziegler, Nucl. Instrum. Methods Phys. Res. A 530, 575 (2004).

    Article  ADS  Google Scholar 

  38. D. M. Small, The Physical Chemistry of Lipids (Plenum, New York, 1986).

    Book  Google Scholar 

  39. A. M. Nesterenko and Yu. A. Ermakov, Biochemistry (Moscow) Suppl. Ser. A: Membr. Cell Biol. 6, 320 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Tikhonov.

Additional information

Original Russian Text © A.M. Tikhonov, V.E. Asadchikov, Yu.O. Volkov, B.S. Roshchin, Yu.A. Ermakov, 2017, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 152, No. 6, pp. 1233–1240.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tikhonov, A.M., Asadchikov, V.E., Volkov, Y.O. et al. X-Ray Reflectometry of DMPS Monolayers on a Water Substrate. J. Exp. Theor. Phys. 125, 1051–1057 (2017). https://doi.org/10.1134/S1063776117120093

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776117120093

Navigation