Skip to main content
Log in

Structural Transformations in Nematic Liquid Crystals with a Hybrid Orientation

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The structural transformations in a nematic liquid crystal (NLC) layer with a hybrid orientation (planar director orientation is created on one substrate and homeotropic director orientation is created on the other) are studied. In the case of a dc voltage applied to the NLC layer, the primary instability is flexoelectric. It causes the appearance of flexoelectric domains oriented along the director on the substrate with a planar orientation. When the voltage increases further, an electroconvective instability in the form of rolls moving almost normal to flexoelectric domains develops along with these domains. Thus, the following spatially periodic structures of different natures coexist in one system: equilibrium static flexoelectric deformation of a director and dissipative moving oblique electroconvection rolls. The primary instability in the case of an ac voltage is represented by electroconvection, which leads to moving oblique or normal rolls depending on the electric field frequency. Above the electroconvection threshold, a transition to moving “abnormal” rolls is detected. The wavevector of the rolls coincides with the initial director orientation on the substrate with a planar orientation, and the projection of the director at the midplane of the NLC layer on the layer plane makes a certain angle with the wavevector. The results of numerical calculations of the threshold characteristics of the primary instabilities agree well with the obtained experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. G. de Gennes, Liquid Crystals (Clarendon, Oxford, 1974).

    MATH  Google Scholar 

  2. S. A. Pikin, Structural Transformations in Liquid Crystals (Nauka, Moscow, 1981; Gordon and Breach Sci., New York, 1991).

    Google Scholar 

  3. Pattern Formation in Liquid Crystals, Ed. by Á. Buka and L. Kramer (Springer, New York, 1996).

  4. L. M. Blinov, Electro- and Magnetooptics of Liquid Crystals (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  5. R. B. Meyer, Phys. Rev. Lett. 22, 918 (1969).

    Article  ADS  Google Scholar 

  6. L. K. Vistin’, Sov. Phys. Dokl. 15, 908 (1970).

    ADS  Google Scholar 

  7. L. K. Vistin’, Sov. Phys. Crystallogr. 15, 514 (1970).

    Google Scholar 

  8. M. I. Barnik, L. M. Blinov, A. N. Trufanov, and B. A. Umanskii, Sov. Phys. JETP 46, 1016 (1977).

    ADS  Google Scholar 

  9. M. I. Barnik, L. M. Blinov, A. N. Trufanov, and B. A. Umanski, J. Phys. (Fr.) 39, 417 (1978).

    Article  Google Scholar 

  10. Yu. P. Bobylev and S. A. Pikin, Sov. Phys. JETP 45, 195 (1977).

    ADS  Google Scholar 

  11. Yu. P. Bobylev, V. G. Chigrinov, and S. A. Pikin, J. Phys. Colloq. (Fr.) 40, 331 (1979).

    Google Scholar 

  12. A. Krekhov, W. Pesch, and Á. Buka, Phys. Rev. E 83, 051706 (2011).

    Article  ADS  Google Scholar 

  13. R. Williams, J. Chem. Phys. 39, 384 (1963).

    Article  ADS  Google Scholar 

  14. A. P. Kapustin and L. S. Larionova, Sov. Phys. Crystallogr. 9, 235 (1964).

    Google Scholar 

  15. Á. Buka, N. Éber, W. Pesch, and L. Kramer, in Self Assembly, Pattern Formation and Growth Phenomenain Nano-Systems, Ed. by A. A. Golovin and A. A. Nepomnyashchy (Springer, Dordrecht, 2006), p. 55.

  16. Á. Buka, N. Éber, W. Pesch, and L. Kramer, Phys. Rep. 448, 115 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  17. E. F. Carr, Mol. Cryst. Liq. Cryst. 7, 253 (1969).

    Google Scholar 

  18. W. Helfrich, J. Chem. Phys. 51, 4092 (1969).

    Article  ADS  Google Scholar 

  19. E. Bodenschatz, W. Zimmermann, and L. Kramer, J. Phys. 49, 1875 (1988).

    Article  Google Scholar 

  20. M. Goscianski and L. Legel, J. Phys. (France) 36, 231 (1975)

    Google Scholar 

  21. L. M. Blinov, M. I. Barnik, V. T. Lazareva, and A. N. Trufanov, J. Phys. (Fr.) 40, 263 (1979).

    ADS  Google Scholar 

  22. E. Kochowska, Sz. Nemeth, G. Pelzl, and Á. Buka, Phys. Rev. E 70, 011711 (2004).

    Article  ADS  Google Scholar 

  23. T. Tóth-Katona, A. Cauquil-Vergnes, N. Éber, and Á. Buka, Phys. Rev. E 75, 066210 (2007).

    Article  ADS  Google Scholar 

  24. P. Kumar, S. N. Patil, U. S. Hiremath, and K. S. Krishnamurthy, J. Phys. Chem. B 111, 8792 (2007).

    Article  Google Scholar 

  25. A. Krekhov, W. Pesch, N. Éber, T. Tóth-Katona, and Á. Buka, Phys. Rev. E 77, 021705 (2008).

    Article  ADS  Google Scholar 

  26. T. Tóth-Katona, N. Éber, Á. Buka, and A. Krekhov, Phys. Rev. E 78, 036306 (2008).

    Article  ADS  Google Scholar 

  27. M. May, W. Schöpf, I. Rehberg, A. Krekhov, and Á. Buka, Phys. Rev. E 78, 046215 (2008).

    Article  ADS  Google Scholar 

  28. E. Plaut, W. Decker, A. G. Rossberg, L. Kramer, W. Pesch, A. Belaidi, and R. Ribotta, Phys. Rev. Lett. 79, 2367 (1997).

    Article  ADS  Google Scholar 

  29. S. Rudroff, H. Zhao, L. Kramer, and I. Rehberg, Phys. Rev. Lett. 81, 4144 (1998).

    Article  ADS  Google Scholar 

  30. S. Rudroff, V. Frette, and I. Rehberg, Phys. Rev. E 59, 1814 (1999).

    Article  ADS  Google Scholar 

  31. E. Plaut and W. Pesch, Phys. Rev. E 59, 1747 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  32. M. Dennin, Phys. Rev. E 62, 6780 (2000).

    Article  ADS  Google Scholar 

  33. S. Hirata and T. Tako, Jpn. J. Appl. Phys. 20, L459 (1981).

    Article  ADS  Google Scholar 

  34. A. N. Chuvyrov and V. G Chigrinov, Sov. Phys. JETP 60, 101 (1984).

    Google Scholar 

  35. V. A. Delev, O. A. Scaldin, and A. N. Chuvyrov, Liq. Cryst. 12, 441 (1992).

    Article  Google Scholar 

  36. V. A. Delev, O. A. Skaldin, and A. N. Chuvyrov, Sov. Phys. Crystallogr. 37, 854 (1992).

    Google Scholar 

  37. E. S. Batyrshin, V. A. Delev, and A. N. Chuvyrov, Crystal. Rep. 44, 506 (1999).

    Google Scholar 

  38. V. A. Delev, E. S. Batyrshin, O. A. Scaldin, and A. N. Chuvyrov, Mol. Cryst. Liq. Cryst. 329, 499 (1999).

    Article  Google Scholar 

  39. V. A. Delev, O. A. Scaldin, E. S. Batyrshin, and E. G. Axelrod, Tech. Phys. 56, 8 (2011).

    Article  Google Scholar 

  40. E. S. Batyrshin, A. P. Krekhov, O. A. Scaldin, and V. A. Delev, J. Exp. Theor. Phys. 114, 1052 (2012).

    Article  ADS  Google Scholar 

  41. O. G. Akhmetshin, O. A. Skaldin, V. A. Delev, and A. N. Chuvyrov, Tech. Phys. Lett. 20, 853 (1994).

    Google Scholar 

  42. O. G. Akhmetshin, V. A. Delev, and O. A. Scaldin, Mol. Cryst. Liq. Cryst. 265, 315 (1995).

    Article  Google Scholar 

  43. A. Hertrich, A. P. Krekhov, and W. Pesch, J. Phys. (France) 5, 733 (1995).

    Article  Google Scholar 

  44. V. A. Delev and A. P. Krekhov, Mol. Cryst. Liq. Cryst. 366, 2693 (2001).

    Google Scholar 

  45. V. A. Delev, A. P. Krekhov, and L. Kramer, Mol. Cryst. Liq. Cryst. 366, 2701 (2001).

    Google Scholar 

  46. V. A. Delev and O. A. Skaldin, Tech. Phys. Lett. 30, 679 (2004).

    Article  ADS  Google Scholar 

  47. S. P. Palto, N. J. Mottram, and M. A. Osipov, Phys. Rev. E 75, 061707 (2007).

    Article  ADS  Google Scholar 

  48. B. A. Umanskii, L. M. Blinov, and M. I. Barnik, Sov. Tech. Phys. Lett. 6, 87 (1980).

    Google Scholar 

  49. B. A. Umanskii, V. G. Chigrinov, L. M. Blinov, and Yu. B. Podyachev, Sov. Phys. JETP 54, 694 (1981).

    Google Scholar 

  50. T. Börzsönyi, Á. Buka, A. P. Krekhov, O. A. Scaldin, and L. Kramer, Phys. Rev. Lett. 84, 1934 (2000).

    Article  ADS  Google Scholar 

  51. T. Börzsönyi, Á. Buka, A. P. Krekhov, and L. Kramer, Phys. Rev. E 58, 7419 (1998).

    Article  ADS  Google Scholar 

  52. A. Krekhov, B. Dressel, W. Pesch, V. Delev, and E. Batyrshin, Phys. Rev. E 92, 062510 (2015).

    Article  ADS  Google Scholar 

  53. T. Takahashi, S. Hashidate, H. Nishijou, M. Usui, M. Kimura, and T. Akahane, Jpn. J. Appl. Phys. 37, 1865 (1998).

    Article  ADS  Google Scholar 

  54. Flexoelectricity in Liquid Crystals. Theory, Experimentsand Applications, Ed. by Á. Buka and N. Éber (World Scientific, UK, 2012).

  55. H. P. Hinov and L. K. Vistin, J. Phys. (France) 40, 269 (1979).

    Article  Google Scholar 

  56. W. Zimmermann and L. Kramer, Phys. Rev. Lett. 55, 402 (1985).

    Article  ADS  Google Scholar 

  57. N. V. Madhusudana, V. A. Raghunathan, and K. R. Sumathy, J. Phys. 28, L311 (1987).

    Google Scholar 

  58. W. Thom, W. Zimmermann, and L. Kramer, Liq. Cryst. 4, 309 (1989).

    Article  Google Scholar 

  59. A. Hertrich, W. Decker, W. Pesch, and L. Kramer, J. Phys. (Fr.) 2, 1915 (1992).

    Google Scholar 

  60. F. H. Busse and E. W. Bolton, J. Fluid. Mech. 146, 115 (1984).

    Article  ADS  Google Scholar 

  61. E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations (Krieger, Dordrecht, 1984).

    MATH  Google Scholar 

  62. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Dover, New York, 1981).

    MATH  Google Scholar 

  63. H. Zhao and L. Kramer, Phys. Rev. E 62, 5092 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Delev.

Additional information

Original Russian Text © V.A. Delev, A.P. Krekhov, 2017, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 152, No. 6, pp. 1414–1430.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delev, V.A., Krekhov, A.P. Structural Transformations in Nematic Liquid Crystals with a Hybrid Orientation. J. Exp. Theor. Phys. 125, 1208–1221 (2017). https://doi.org/10.1134/S1063776117120032

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776117120032

Navigation