Skip to main content
Log in

Analysis of macroparticle charge screening in a nonequilibrium plasma based on the kinetic collisional point sink model

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The screening of macroparticles in a nonequilibrium plasma is considered on the basis of the Vlasov kinetic equations supplemented with the collisional term in the Bhatnagar–Gross–Krook approximation and the point sink method. In this method, the absorption of electrons and ions by a macroparticle is described by introducing effective point sinks into the kinetic equations for plasma electrons and ions. Explicit expressions are derived for the potential distribution around a macroparticle and effective charges that determine the behavior of the potential at large distances taking into account collisions of electrons and ions with neutral buffer gas atoms. We consider the cases of a constant collision frequency and constant mean free paths of electrons and ions in the buffer gas. Numerical calculations are performed for dusty isothermal and nonisothermal plasmas in helium, neon, argon, krypton, and xenon at pressures of 10–1 to 104 Pa, which are typical of experiments with dusty plasmas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ivlev, H. Löwen, G. Morfill, and C. P. Royall, Complex Plasmas and Colloidal Dispersions: Particle-Resolved Studies of Classical Liquids and Solids, Vol. 5 of Series in Soft Condensed Matter (World Scientific, Singapore, 2012).

    Book  Google Scholar 

  2. A. V. Filippov, A. F. Pal’, and A. N. Starostin, J. Exp. Theor. Phys. 121, 909 (2015).

    Article  ADS  Google Scholar 

  3. F. Babick, in Suspensions of Colloidal Particles and Aggregates, Vol. 20 of Particle Technology Series (Springer Int., Cham, 2016), p.75.

    Google Scholar 

  4. H. Ohshima, in Encyclopedia of Biocolloid and Biointerface Science (Wiley, Hoboken, NJ, 2016).

    Book  Google Scholar 

  5. A. V. Filippov and I. N. Derbenev, J. Exp. Theor. Phys. 123, 1099 (2016).

    Article  ADS  Google Scholar 

  6. I. N. Derbenev, A. V. Filippov, A. J. Stace, and E. Besley, J. Chem. Phys. 145, 084103 (2016).

    Article  ADS  Google Scholar 

  7. C. Chen and W. Huang, Environ. Sci. Technol. 51, 2077 (2017).

    Article  ADS  Google Scholar 

  8. I. B. Bernstein and I. V. Rabinovich, Phys. Fluids 2, 112 (1959).

    Article  ADS  Google Scholar 

  9. J. G. Laframbois and L. W. Parker, Phys. Fluids 15, 629 (1973).

    Article  ADS  Google Scholar 

  10. J. Goree, Phys. Rev. Lett. 69, 277 (1992).

    Article  ADS  Google Scholar 

  11. J. E. Dougherty, R. K. Porteous, M. D. Kilgore, and D. B. Graves, J. Appl. Phys. 72, 3934 (1992).

    Article  ADS  Google Scholar 

  12. V. N. Tsytovich, Ya. K. Khodataev, and R. Bingham, Comm. Plasma Phys. Contr. Fusion 17, 249 (1996).

    Google Scholar 

  13. M. Lampe, G. Joyce, G. Ganguli, and V. Gavrishchaka, Phys. Plasmas 7, 3851 (2000).

    Article  ADS  Google Scholar 

  14. M. Lampe, V. Gavrishchaka, G. Ganguli, and G. Joyce, Phys. Rev. Lett. 86, 5378 (2001).

    Article  ADS  Google Scholar 

  15. T. Bystrenko and A. Zagorodny, Phys. Lett. A 299, 383 (2002).

    Article  ADS  Google Scholar 

  16. A. F. Pal’, A. N. Starostin, and A. V. Filippov, Plasma Phys. Rep. 27, 143 (2001).

    Article  ADS  Google Scholar 

  17. A. F. Pal’, A. O. Serov, A. N. Starostin, A. V. Filippov, and V. E. Fortov, J. Exp. Theor. Phys. 92, 235 (2001).

    Article  ADS  Google Scholar 

  18. A. F. Pal’, D. V. Sivokhin, A. N. Starostin, A. V. Filippov, and V. E. Fortov, Plasma Phys. Rep. 28, 28 (2002).

    Article  ADS  Google Scholar 

  19. O. Bystrenko and A. Zagorodny, Phys. Rev. E 67, 066403 (2003).

    Article  ADS  Google Scholar 

  20. A. V. Filippov, A. G. Zagorodny, A. I. Momot, A. F. Pal, and A. N. Starostin, J. Exp. Theor. Phys. 104, 147 (2007).

    Article  ADS  Google Scholar 

  21. A. V. Filippov, A. G. Zagorodny, A. I. Momot, A. F. Pal’, and A. N. Starostin, J. Exp. Theor. Phys. 108, 497 (2009).

    Article  ADS  Google Scholar 

  22. J. E. Allen, B. M. Annaratone, and U. de Angelis, J. Plasma Phys. 63, 299 (2000).

    Article  ADS  Google Scholar 

  23. X.-Z. Tang and G. L. Delzanno, Phys. Plasmas 21, 123708 (2014).

    Article  ADS  Google Scholar 

  24. I. L. Semenov, A. G. Zagorodny, and I. V. Krivtsun, Phys. Plasmas 18, 103707 (2011).

    Article  ADS  Google Scholar 

  25. I. L. Semenov, A. G. Zagorodny, and I. V. Krivtsun, Phys. Plasmas 19, 043703 (2012).

    Article  ADS  Google Scholar 

  26. A. V. Zobnin, A. D. Usachev, O. F. Petrov, and V. E. Fortov, Phys. Plasmas 15, 043705 (2008).

    Article  ADS  Google Scholar 

  27. I. B. Bernstein and T. Holstein, Phys. Rev. 94, 1475 (1954).

    Article  ADS  Google Scholar 

  28. L. D. Tsendin, Sov. Phys. JETP 39, 805 (1974).

    ADS  Google Scholar 

  29. A. V. Filippov, N. A. Dyatko, and A. S. Kostenko, J. Exp. Theor. Phys. 119, 985 (2014).

    Article  ADS  Google Scholar 

  30. A. G. Zagorodny, A. V. Filippov, A. F. Pal’, A. N. Starostin, and A. I. Momot, in Proceedings of the 2nd International Conference on the Physics of Dusty, Burning Plasmas, 2007, Aug. 26–30, Odessa, Ukraine, p.176.

  31. A. V. Filippov, A. G. Zagorodny, A. F. Pal’, A. N. Starostin, and A. I. Momot, JETP Lett. 86, 761 (2007).

    Article  ADS  Google Scholar 

  32. A. G. Zagorodny, Theor. Math. Phys. 160, 1100 (2009).

    Article  Google Scholar 

  33. S. A. Khrapak, B. A. Klumov, and G. E. Morfill, Phys. Rev. Lett. 100, 225003 (2008).

    Article  ADS  Google Scholar 

  34. S. Khrapak and G. Morfill, Contrib. Plasma Phys. 49, 148 (2009).

    Article  ADS  Google Scholar 

  35. A. G. Zagorodny, A. V. Filippov, A. F. Pal’, et al., Vopr. At. Nauki Tekh., Ser. Fiz. Plazmy, No. 12, 99 (2006).

    Google Scholar 

  36. A. V. Filippov, A. G. Zagorodny, A. I. Momot, A. F. Pal’, and A. N. Starostin, J. Exp. Theor. Phys. 105, 831 (2007).

    Article  ADS  Google Scholar 

  37. P. L. Bhatnagar, P. E. Gross, and M. Krook, Phys. Rev. 54, 511 (1954).

    Article  ADS  Google Scholar 

  38. H. M. Mott-Smith and I. Langmuir, Phys. Rev. 28, 727 (1926).

    Article  ADS  Google Scholar 

  39. A. V. Zobnin, A. P. Nefedov, V. A. Sinel’shchikov, and V. E. Fortov, J. Exp. Theor. Phys. 91, 483 (2000).

    Article  ADS  Google Scholar 

  40. O. S. Vaulina, A. Yu. Repin, O. F. Petrov, and K. G. Adamovich, J. Exp. Theor. Phys. 102, 986 (2006).

    Article  ADS  Google Scholar 

  41. L. G. D’yachkov, A. G. Khrapak, S. A. Khrapak, and G. E. Morfill, Phys. Plasmas 14, 042102 (2007).

    Article  ADS  Google Scholar 

  42. I. H. Hutchinson and L. Patacchini, Phys. Plasmas 14, 013505 (2007).

    Article  ADS  Google Scholar 

  43. S. A. Khrapak and G. E. Morfill, Phys. Plasmas 15, 114503 (2008).

    Article  ADS  Google Scholar 

  44. I. Pilch, L. Caillault, T. Minea, U. Helmersson, A. A. Tal, I. A. Abrikosov, E. P. Münger, and N. Brenning, J. Phys. D: Appl. Phys. 49, 395208 (2016).

    Article  Google Scholar 

  45. S. Ichimaru and I. P. Yakimenko, Phys. Scripta 7, 198 (1973).

    Article  ADS  Google Scholar 

  46. I. P. Yakimenko and A. G. Zagorodny, Phys. Scr. 10, 244 (1974).

    Article  ADS  Google Scholar 

  47. Yu. L. Klimontovich, H. Wilhelmsson, I. P. Yakimenko, and A. G. Zagorodny, Phys. Rep. 175, 265 (1989).

    Article  ADS  Google Scholar 

  48. A. A. Rukhadze and V. P. Silin, Sov. Phys. Usp. 5, 37 (1962).

    Article  ADS  Google Scholar 

  49. I. N. Derbenev, N. A. Dyatko, and A. V. Filippov, Plasma Phys. Rep. 38, 244 (2012).

    Article  ADS  Google Scholar 

  50. G. Bateman and A. Erdelyi, Tables of Integral Transforms (McGraw-Hill, New York, 1954; Nauka, Moscow, 1969), Vol.1.

    Google Scholar 

  51. Ya. L. Al’pert, A. V. Gurevich, and L. P. Pitaevskii, Space Physics with Artificial Satellites (Plenum, New York, 1965).

    Google Scholar 

  52. G. J. M. Hagelaar and L. C. Pitchford, Plasma Sources Sci. Technol. 14, 722 (2005).

    Article  ADS  Google Scholar 

  53. B. M. Smirnov, Ions and Excited Atoms in Plasma (Atomizdat, Moscow, 1974) [in Russian].

    Google Scholar 

  54. L. C. Pitchford, L. L. Alves, K. Bartschat, S. F. Biagi, M. C. Bordage, A. V. Phelps, C. M. Ferreira, G. J. M. Hagelaar, W. L. Morgan, S. Pancheshnyi, V. Puech, A. Stauffer, and O. Zatsarinny, J. Phys. D: Appl. Phys. 46, 334001 (2013).

    Article  Google Scholar 

  55. L. L. Alves, K. Bartschat, S. F. Biagi, M. C. Bordage, L. C. Pitchford, C. M. Ferreira, G. J. M. Hagelaar, W. L. Morgan, S. Pancheshnyi, A. V. Phelps, V. Puech, and O. Zatsarinny, J. Phys. D: Appl. Phys. 46, 334002 (2013).

    Article  Google Scholar 

  56. M. C. Bordage, S. F. Biagi, L. L. Alves, K. Bartschat, S. Chowdhury, L. C. Pitchford, G. J. M. Hagelaar, W. L. Morgan, V. Puech, and O. Zatsarinny, J. Phys. D: Appl. Phys. 46, 334003 (2013).

    Article  Google Scholar 

  57. T. Hagfors, Phys. Fluids 13, 2790 (1970).

    Article  ADS  Google Scholar 

  58. T. Hagfors and R. A. Brockelman, Phys. Fluids 14, 1143 (1971).

    Article  ADS  Google Scholar 

  59. V. D. Shafranov, in Problems of Plasma Theory, Ed. by M. A. Leontovich (Gosatomizdat, Moscow, 1963), No. 3 [in Russian].

  60. A. F. Alexandrov, L. S. Bogdankevich, and A. A. Rukhadze, Principles of Plasma Electrodynamics (Vyssh. Shkola, Moscow, 1988, Springer, Heidelberg, 1984).

    Google Scholar 

  61. V. N. Fadeeva and N. M. Terent’ev, Tables of Values of the function \(w\left( z \right) = {e^{ - {z^2}}}\sqrt \pi \int_0^z {{e^{{t^2}}}} dt\) for Complex Arguments (Gostekhizdat, Moscow, 1964, Pergamon, New York, 1961).

    Google Scholar 

  62. I. S. Gradshtein and I. M. Ryzhik, Table of Integrals, Series and Products (Academic, New York, 1980, Fizmatgiz, Moscow, 1963).

    Google Scholar 

  63. E. Jahnke, F. Emde, and F. Lüsch, Tables of Higher Functions (McGraw-Hill, New York, 1960, Nauka, Moscow, 1977).

    Google Scholar 

  64. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Ed. by M. Abramowitz and I. A. Stegun, Vol. 55 of Applied Mathematics Series (Natl. Bureau of Standards, 1972).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Filippov.

Additional information

Original Russian Text © A.V. Filippov, A.G. Zagorodny, A.I. Momot, A.F. Pal’, A.N. Starostin, 2017, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 152, No. 5, pp. 1088–1103.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filippov, A.V., Zagorodny, A.G., Momot, A.I. et al. Analysis of macroparticle charge screening in a nonequilibrium plasma based on the kinetic collisional point sink model. J. Exp. Theor. Phys. 125, 926–939 (2017). https://doi.org/10.1134/S1063776117100077

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776117100077

Navigation