Journal of Experimental and Theoretical Physics

, Volume 125, Issue 5, pp 719–727 | Cite as

Unstable behaviors of classical solutions in spinor-type conformal invariant fermionic models

Nuclei, Particles, Fields, Gravitation, and Astrophysics
  • 58 Downloads

Abstract

It is well known that instantons are classical topological solutions existing in the context of quantum field theories that lie behind the standard model of particles. To provide a better understanding for the dynamical nature of spinor-type instanton solutions, conformal invariant pure spinor fermionic models that admit particle-like solutions for the derived classical field equations are studied in this work under cosine wave forcing. For this purpose, the effects of external periodic forcing on two systems that have different dimensions and quantum spinor numbers and have been obtained under the use of Heisenberg ansatz are investigated by constructing their Poincaré sections in phase space. As a result, bifurcations and chaos are observed depending on the excitation amplitude of the external forcing in both pure spinor fermionic models.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. de Broglie, An Introduction to the Study of Wave Mechanics (Methuen, London, 1930).MATHGoogle Scholar
  2. 2.
    P. A. M. Dirac, The Quantum Theory of the Electron (Royal Society, London, 1928).MATHGoogle Scholar
  3. 3.
    W. Heisenberg, Zs. Naturforsch. 9a, 292 (1954).ADSGoogle Scholar
  4. 4.
    F. Gursey, Nuovo Cimento 3, 988 (1956).CrossRefGoogle Scholar
  5. 5.
    F. Kortel, Nuovo Cimento 4, 210 (1956).MathSciNetCrossRefGoogle Scholar
  6. 6.
    K. G. Akdeniz, Nuovo Cimento 33, 40 (1981).Google Scholar
  7. 7.
    A. A. Belavin, A. M. Polyakof, A. S. Schwartz, and Yu. S. Tyupkin, Phys. Lett. B 59, 85 (1975).ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    W. E. Thirring, Anal. Phys. 3, 91 (1958).ADSCrossRefGoogle Scholar
  9. 9.
    K. G. Akdeniz and A. Smailagic, Nuovo Cimento A 51, 345 (1979).ADSCrossRefGoogle Scholar
  10. 10.
    K. G. Akdeniz, M. Arik, M. Durgut, M. Hortacsu, S. Kaptanoglu, and N. K. Pak, Phys. Lett. B 116, 34 (1982).ADSCrossRefGoogle Scholar
  11. 11.
    M. Hortacsu and B. C. Lutfuoglu, Phys. Rev. D 76, 025013 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    M. Hortacsu, B. C. Lutfuoglu, and F. Taskin, Mod. Phys. Lett. A 22, 2521 (2007).ADSCrossRefGoogle Scholar
  13. 13.
    F. Taskin, Eur. Phys. J. C 68, 277 (2010).ADSCrossRefGoogle Scholar
  14. 14.
    F. Aydogmus, B. Canbaz, C. Onem, and K. G. Akdeniz, Acta Phys. Polon. B 44, 1837 (2013).ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    F. Aydogmus, JETP 120, 210 (2015).ADSCrossRefGoogle Scholar
  16. 16.
    F. Aydogmus, J. Mod. Phys. C 26, 1550083 (2015).ADSCrossRefGoogle Scholar
  17. 17.
    R. Jackew, Rev. Mod. Phys. 49, 681 (1977)ADSCrossRefGoogle Scholar
  18. 17a.
    A. Chakrabarti, Introduction to Classical Solutions of Yang–Mills Filed Equations (Ecole Polytechnique, Paris, 1968).Google Scholar
  19. 18.
    F. Aydogmus and E. Tosyali, Adv. High Energy Phys. 148375 (2014).Google Scholar
  20. 19.
    G. Duffing, Erzwungene Schwingungen bei Veranderlicher Eigenfrequenz (F. Vieweg and Sohn, Braunschweig, 1918).MATHGoogle Scholar
  21. 20.
    B. Canbaz, C. Onem, F. Aydogmus, and K. G. Akdeniz, Chaos Solitons Fractals 45, 188 (2012).ADSMathSciNetCrossRefGoogle Scholar
  22. 21.
    H. Bradt and S. Olbert, Liouville’s Theorem (Cambridge Univ. Press, Cambridge, 2008).Google Scholar
  23. 22.
    L. M. Pismen, Patterns and Interfaces in Dissipative Dynamics (Springer, 2006).MATHGoogle Scholar
  24. 23.
    S. Strogatz, Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry, and Engineering (Perseus Books, 1999).MATHGoogle Scholar
  25. 24.
    M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer, Berlin, 1986).MATHGoogle Scholar
  26. 25.
    A. N. Kolmogorov, in Stochastic Behaviourin Classical and Quantum Hamiltonian Systems, Proceedings of the Volta Memorial Conference, 1977; Lect. Notes Phys. 93, 51 (1979)ADSCrossRefGoogle Scholar
  27. 26a.
    V. I. Arnold, Russ. Math. Surv. 18, 13 (1963)CrossRefGoogle Scholar
  28. 27a.
    J. Moser, Nachr. Akad. Wiss. Gott. II, 1 (1962).Google Scholar
  29. 26.
    J. Kraskievicz and R. Raczka, Nuovo Cimento A 93, 28 (1986).ADSCrossRefGoogle Scholar
  30. 27.
    T. S. Biro, S. G. Matinyan, and B. Muller, Chaos and Gauge Field Theory (World Sci., Singapore, 1994).MATHGoogle Scholar
  31. 28.
    V. Kuvshinov and A. Kuzmin, Phys. Lett. A 296, 82 (2002).ADSMathSciNetCrossRefGoogle Scholar
  32. 29.
    V. Kuvshinov, A. Kuzmin, and R. G. Shulyakovsky, Phys. Rev. E 67, 015201(R) (2003).ADSCrossRefGoogle Scholar
  33. 30.
    K. A. Aoki, M. Horikoshi, M. Taniguchi, and H. Terao, Non-Perturbative Renormalization Group and Quantum Tunneling (World Sci., Singapore, 1998).MATHGoogle Scholar
  34. 31.
    H. Jirari, H. Kroger, X. Q. Luo, K. J. M. Moriarty, and S. G. Rubin, Phys. Lett. A 281, 1 (2001).ADSMathSciNetCrossRefGoogle Scholar
  35. 32.
    A. M. Polyakov, JETP Lett. 12, 381 (1970).ADSGoogle Scholar
  36. 33.
    A. A. Migdal, Phys. Lett. B 37, 386 (1971).ADSCrossRefGoogle Scholar
  37. 34.
    G. Parisi and L. Peliti, Lett. Nuovo Cimento 2, 627 (1971).CrossRefGoogle Scholar
  38. 35.
    G. Mack and I. T. Todorov, Preprint IC/71/139 (ICTP, Trieste, 1971).Google Scholar
  39. 36.
    I. T. Todorov, Lect. Notes Phys. 17 (1973).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Department of PhysicsIstanbul UniversityIstanbulTurkey

Personalised recommendations