Journal of Experimental and Theoretical Physics

, Volume 125, Issue 4, pp 644–650 | Cite as

An estimate for the magnetization reversal time of antiferromagnetic chains within the Heisenberg model

Order, Disorder, and Phase Transition in Condensed System
  • 5 Downloads

Abstract

Within the Heisenberg model in the presence of uniaxial magnetic anisotropy, formulas are obtained that allow one to estimate both the spontaneous magnetization reversal time of an antiferromagnetic chain and the magnetization reversal time due to interaction with the conducting tip of a scanning tunneling microscope (STM). Corrections due to a possible difference between the properties of the end and inner atoms of the chain are calculated. Numerical estimates are obtained for typical parameter values of the Heisenberg Hamiltonian.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Jungwirth, X. Marti, P. Wadley, and J. Wunderlich, Nat. Nanotechnol. 11, 231 (2016).ADSCrossRefGoogle Scholar
  2. 2.
    S. Loth, S. Baumann, C. P. Lutz, D. M. Eigler, and A. J. Heinrich, Science 335, 196 (2012).ADSCrossRefGoogle Scholar
  3. 3.
    J.-P. Gauyacq, S. M. Yaro, X. Cartoixá, and N. Lorente, Phys. Rev. Lett. 110, 087201 (2013).ADSCrossRefGoogle Scholar
  4. 4.
    K. Tao, O. P. Polyakov, and V. S. Stepanyuk, Phys. Rev. B 93, 161412(R) (2016).Google Scholar
  5. 5.
    P. Gambardella, A. Dallmeyer, K. Maiti, M. C. Malagoli, W. Eberhardt, K. Kern, and C. Carbone, Nature 416, 301 (2002).ADSCrossRefGoogle Scholar
  6. 6.
    R. Cao, Z. Zhong, J. Hu, X. Zhang, B. Miao, L. Sun, B. You, D. Wu, A. Hu, W. Zhang, and H. Ding, Appl. Phys. Lett. 103, 081608 (2013).ADSCrossRefGoogle Scholar
  7. 7.
    P. Ferstl, L. Hammer, C. Sobel, M. Gubo, K. Heinz, and M. A. Schneider, Phys. Rev. Lett. 117, 046101 (2016).ADSCrossRefGoogle Scholar
  8. 8.
    J.-P. Gauyacq and N. Lorente, J. Phys.: Condens. Matter 27, 455301 (2015).Google Scholar
  9. 9.
    S. V. Kolesnikov, JETP Lett. 103, 588 (2016).ADSCrossRefGoogle Scholar
  10. 10.
    K. M. Tsysar, S. V. Kolesnikov, and A. M. Saletsky, Chin. Phys. B 24, 097302 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    S. V. Kolesnikov, K. M. Tsysar, and A. M. Saletsky, Phys. Solid State 57, 1513 (2015).ADSCrossRefGoogle Scholar
  12. 12.
    Y. Li and B.-G. Liu, Phys. Rev. B 73, 174418 (2006).ADSCrossRefGoogle Scholar
  13. 13.
    R. J. Glauber, J. Math. Phys. 4, 294 (1963).ADSCrossRefMathSciNetGoogle Scholar
  14. 14.
    Ch. Kittel, Quantum Theory of Solids (Wiley, New York, 1963; Nauka, Moscow, 1967).MATHGoogle Scholar
  15. 15.
    F. D. M. Haldane, Phys. Lett. A 93, 464 (1983).ADSCrossRefMathSciNetGoogle Scholar
  16. 16.
    E. M. Chudnovsky and L. Gunther, Phys. Rev. Lett. 60, 661 (1988).ADSCrossRefMathSciNetGoogle Scholar
  17. 17.
    W. Wernsdorfer, R. Clérac, C. Coulon, L. Lecren, and H. Miyasaka, Phys. Rev. Lett. 95, 237203 (2005).ADSCrossRefGoogle Scholar
  18. 18.
    A. S. Smirnov, N. N. Negulyaev, W. Hergert, A. M. Saletsky, and V. S. Stepanyuk, New J. Phys. 11, 063004 (2009).ADSCrossRefGoogle Scholar
  19. 19.
    N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).ADSCrossRefGoogle Scholar
  20. 20.
    A. G. Syromyatnikov, S. V. Kolesnikov, A. M. Saletsky, and A. L. Klavsyuk, Mater. Lett. 179, 69 (2016).CrossRefGoogle Scholar
  21. 21.
    M. C. Urdaniz, M. A. Barral, A. M. Llois, and A. Saúl, Phys. Rev. B 90, 195423 (2014).ADSCrossRefGoogle Scholar
  22. 22.
    S. Pick, P. A. Ignatiev, A. L. Klavsyuk, W. Hergert, V. S. Stepanyuk, and P. Bruno, J. Phys.: Condens. Matter 19, 446001 (2007).ADSGoogle Scholar
  23. 23.
    B. Lazarovits, L. Szunyogh, P. Weinberger, and B. Újfalussy, Phys. Rev. B 68, 024433 (2003).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Faculty of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations