Journal of Experimental and Theoretical Physics

, Volume 125, Issue 4, pp 709–713 | Cite as

Smectic islands in antiferroelectric nanofilms

  • P. V. Dolganov
  • N. S. Shuravin
  • V. K. Dolganov
  • A. Fukuda
Statistical, Nonlinear, and Soft Matter Physics
  • 3 Downloads

Abstract

Heterochiral islands, in which topological dipoles are oppositely directed, are observed in freestanding antiferroelectric (SmCA*) films. The topological dipoles in films with a transverse electric polarization and a planar molecule orientation at island boundaries are coplanar with an electric field. The topological dipoles in films with a longitudinal polarization and a planar orientation at island boundaries are perpendicular to an electric field. For a radial director orientation at island boundaries, the topological dipoles in films with a longitudinal polarization are coplanar with a field. Changing the orientation of an electric field, we can control the position of a topological defect at an island boundary and the orientation of a topological dipole. Heterochiral islands can form dimers with an anomalously small interisland distance.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. G. de Gennes and J. Prost, Physics of Liquid Crystals, 2nd ed. (Clarendon, Oxford, 1993).Google Scholar
  2. 2.
    L. M. Blinov, Electro-and Magnetooptics of Liquid Crystals (Nauka, Moscow, 1978) [in Russian].Google Scholar
  3. 3.
    J. C. Loudet and P. Poulin, Phys. Rev. Lett. 87, 165503 (2001).ADSCrossRefGoogle Scholar
  4. 4.
    Y. Reznikov, O. Buchnev, O. Tereschenko, V. Reshetnyak, A. Gluschenko, and J. West, Appl. Phys. Lett. 82, 1917 (2003).ADSCrossRefGoogle Scholar
  5. 5.
    G. Liao, I. I. Smalyukh, J. R. Kelly, O. D. Lavrentovich, and A. Jakli, Phys. Rev. E 72, 031704 (2005).ADSCrossRefGoogle Scholar
  6. 6.
    C. P. Lapointe, S. Hopkins, T. G. Mason, and I. I. Smalyukh, Phys. Rev. Lett. 105, 178301 (2010).ADSCrossRefGoogle Scholar
  7. 7.
    O. Kurochkin, H. Atkuri, O. Buchnev, A. Gluschenko, O. Grabar, R. Karapinar, V. Reshetnyak, J. West, and Yu. Reznikov, Condens. Matter Phys. 13, 337014 (2010).CrossRefGoogle Scholar
  8. 8.
    K. Tagashira, K. Asakura, G. Nakazawa, H. Yoshida, and M. Ozaki, AIP Adv. 2, 042156 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    A. Nych, U. Ognysta, M. Škarabot, M. Ravnik, S. Žumer, and I. Muševič, Nat. Commun. 4, 1489 (2013).ADSCrossRefGoogle Scholar
  10. 10.
    G. Mirri, V. S. R. Jampani, G. Cordoyiannis, P. Umek, P. H. J. Kouver, and I. Muševič, Soft Matter 10, 5797 (2014).ADSCrossRefGoogle Scholar
  11. 11.
    D. Pettey, T. C. Lubensky, and D. R. Link, Liq. Cryst. 25, 579 (1998).CrossRefGoogle Scholar
  12. 12.
    A. Fukuda, Y. Takanishi, T. Isozaki, K. Ishikawa, and H. Takezoe, J. Mater. Chem. 4, 997 (1994).CrossRefGoogle Scholar
  13. 13.
    P. V. Dolganov, N. S. Shuravin, V. K. Dolganov, and A. Fukuda, Phys. Rev. E 95, 012711 (2017).ADSCrossRefGoogle Scholar
  14. 14.
    P. Pieranski, L. Beliard, J.-Ph. Tourellec, X. Leoncini, C. Furtlehner, H. Dumoulin, E. Riou, B. Jouvin, J. P. Fénerol, Ph. Palaric, J. Hueving, B. Cartier, and I. Kraus, Physica A 194, 364 (1993).ADSCrossRefGoogle Scholar
  15. 15.
    D. R. Link, G. Natale, R. Shao, J. E. Maclennan, N. A. Clark, E. Korblova, and D. M. Walba, Science 278, 1924 (1997).ADSCrossRefGoogle Scholar
  16. 16.
    D. R. Link, J. E. Maclennan, and N. A. Clark, Phys. Rev. Lett. 77, 2237 (1996).ADSCrossRefGoogle Scholar
  17. 17.
    J. E. Maclennan, D. R. Link, J. Natale, R. Keast, and N. A. Clark, Phys. Rev. Lett. 82, 2508 (1999).ADSCrossRefGoogle Scholar
  18. 18.
    P. V. Dolganov, Y. Suzuki, and A. Fukuda, Phys. Rev. E 65, 031702 (2002).ADSCrossRefGoogle Scholar
  19. 19.
    P. V. Dolganov, H. T. Nguyen, E. I. Kats, V. K. Dolganov, and P. Cluzeau, Phys. Rev. E 75, 031706 (2007).ADSCrossRefGoogle Scholar
  20. 20.
    P. V. Dolganov, V. K. Dolganov, and P. Cluzeau, J. Exp. Theor. Phys. 136, 169 (2009).ADSCrossRefGoogle Scholar
  21. 21.
    P. V. Dolganov, E. I. Kats, V. K. Dolganov, and P. Cluzeau, JETP Lett. 90, 382 (2009).ADSCrossRefGoogle Scholar
  22. 22.
    N. M. Silvestre, P. Patricio, M. M. Telo da Gama, A. Pattanaporkratana, C. S. Park, J. E. Maclennan, and N. A. Clark, Phys. Rev. E 80, 041708 (2009).ADSCrossRefGoogle Scholar
  23. 23.
    P. V. Dolganov, H. T. Nguyen, G. Joly, V. K. Dolganov, and P. Cluzeau, Europhys. Lett. 76, 250 (2006).ADSCrossRefGoogle Scholar
  24. 24.
    C. Bohley and R. Stannarius, Soft Matter 4, 683 (2008).ADSCrossRefGoogle Scholar
  25. 25.
    P. V. Dolganov and P. Cluzeau, Phys. Rev. E 78, 021701 (2008).ADSCrossRefGoogle Scholar
  26. 26.
    S. A. Langer and J. P. Sethna, Phys. Rev. A 34, 5035 (1986).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • P. V. Dolganov
    • 1
  • N. S. Shuravin
    • 1
  • V. K. Dolganov
    • 1
  • A. Fukuda
    • 2
  1. 1.Institute of Solid State PhysicsRussian Academy of SciencesMoscow oblast, ChernogolovkaRussia
  2. 2.Department of Electronic and Electrical EngineeringUniversity of DublinDublin 2Ireland

Personalised recommendations