Skip to main content
Log in

Smectic islands in antiferroelectric nanofilms

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Heterochiral islands, in which topological dipoles are oppositely directed, are observed in freestanding antiferroelectric (SmC A *) films. The topological dipoles in films with a transverse electric polarization and a planar molecule orientation at island boundaries are coplanar with an electric field. The topological dipoles in films with a longitudinal polarization and a planar orientation at island boundaries are perpendicular to an electric field. For a radial director orientation at island boundaries, the topological dipoles in films with a longitudinal polarization are coplanar with a field. Changing the orientation of an electric field, we can control the position of a topological defect at an island boundary and the orientation of a topological dipole. Heterochiral islands can form dimers with an anomalously small interisland distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. G. de Gennes and J. Prost, Physics of Liquid Crystals, 2nd ed. (Clarendon, Oxford, 1993).

    Google Scholar 

  2. L. M. Blinov, Electro-and Magnetooptics of Liquid Crystals (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  3. J. C. Loudet and P. Poulin, Phys. Rev. Lett. 87, 165503 (2001).

    Article  ADS  Google Scholar 

  4. Y. Reznikov, O. Buchnev, O. Tereschenko, V. Reshetnyak, A. Gluschenko, and J. West, Appl. Phys. Lett. 82, 1917 (2003).

    Article  ADS  Google Scholar 

  5. G. Liao, I. I. Smalyukh, J. R. Kelly, O. D. Lavrentovich, and A. Jakli, Phys. Rev. E 72, 031704 (2005).

    Article  ADS  Google Scholar 

  6. C. P. Lapointe, S. Hopkins, T. G. Mason, and I. I. Smalyukh, Phys. Rev. Lett. 105, 178301 (2010).

    Article  ADS  Google Scholar 

  7. O. Kurochkin, H. Atkuri, O. Buchnev, A. Gluschenko, O. Grabar, R. Karapinar, V. Reshetnyak, J. West, and Yu. Reznikov, Condens. Matter Phys. 13, 337014 (2010).

    Article  Google Scholar 

  8. K. Tagashira, K. Asakura, G. Nakazawa, H. Yoshida, and M. Ozaki, AIP Adv. 2, 042156 (2012).

    Article  ADS  Google Scholar 

  9. A. Nych, U. Ognysta, M. Škarabot, M. Ravnik, S. Žumer, and I. Muševič, Nat. Commun. 4, 1489 (2013).

    Article  ADS  Google Scholar 

  10. G. Mirri, V. S. R. Jampani, G. Cordoyiannis, P. Umek, P. H. J. Kouver, and I. Muševič, Soft Matter 10, 5797 (2014).

    Article  ADS  Google Scholar 

  11. D. Pettey, T. C. Lubensky, and D. R. Link, Liq. Cryst. 25, 579 (1998).

    Article  Google Scholar 

  12. A. Fukuda, Y. Takanishi, T. Isozaki, K. Ishikawa, and H. Takezoe, J. Mater. Chem. 4, 997 (1994).

    Article  Google Scholar 

  13. P. V. Dolganov, N. S. Shuravin, V. K. Dolganov, and A. Fukuda, Phys. Rev. E 95, 012711 (2017).

    Article  ADS  Google Scholar 

  14. P. Pieranski, L. Beliard, J.-Ph. Tourellec, X. Leoncini, C. Furtlehner, H. Dumoulin, E. Riou, B. Jouvin, J. P. Fénerol, Ph. Palaric, J. Hueving, B. Cartier, and I. Kraus, Physica A 194, 364 (1993).

    Article  ADS  Google Scholar 

  15. D. R. Link, G. Natale, R. Shao, J. E. Maclennan, N. A. Clark, E. Korblova, and D. M. Walba, Science 278, 1924 (1997).

    Article  ADS  Google Scholar 

  16. D. R. Link, J. E. Maclennan, and N. A. Clark, Phys. Rev. Lett. 77, 2237 (1996).

    Article  ADS  Google Scholar 

  17. J. E. Maclennan, D. R. Link, J. Natale, R. Keast, and N. A. Clark, Phys. Rev. Lett. 82, 2508 (1999).

    Article  ADS  Google Scholar 

  18. P. V. Dolganov, Y. Suzuki, and A. Fukuda, Phys. Rev. E 65, 031702 (2002).

    Article  ADS  Google Scholar 

  19. P. V. Dolganov, H. T. Nguyen, E. I. Kats, V. K. Dolganov, and P. Cluzeau, Phys. Rev. E 75, 031706 (2007).

    Article  ADS  Google Scholar 

  20. P. V. Dolganov, V. K. Dolganov, and P. Cluzeau, J. Exp. Theor. Phys. 136, 169 (2009).

    Article  ADS  Google Scholar 

  21. P. V. Dolganov, E. I. Kats, V. K. Dolganov, and P. Cluzeau, JETP Lett. 90, 382 (2009).

    Article  ADS  Google Scholar 

  22. N. M. Silvestre, P. Patricio, M. M. Telo da Gama, A. Pattanaporkratana, C. S. Park, J. E. Maclennan, and N. A. Clark, Phys. Rev. E 80, 041708 (2009).

    Article  ADS  Google Scholar 

  23. P. V. Dolganov, H. T. Nguyen, G. Joly, V. K. Dolganov, and P. Cluzeau, Europhys. Lett. 76, 250 (2006).

    Article  ADS  Google Scholar 

  24. C. Bohley and R. Stannarius, Soft Matter 4, 683 (2008).

    Article  ADS  Google Scholar 

  25. P. V. Dolganov and P. Cluzeau, Phys. Rev. E 78, 021701 (2008).

    Article  ADS  Google Scholar 

  26. S. A. Langer and J. P. Sethna, Phys. Rev. A 34, 5035 (1986).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Dolganov.

Additional information

Original Russian Text © P.V. Dolganov, N.S. Shuravin, V.K. Dolganov, A. Fukuda, 2017, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 152, No. 4, pp. 834–839.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolganov, P.V., Shuravin, N.S., Dolganov, V.K. et al. Smectic islands in antiferroelectric nanofilms. J. Exp. Theor. Phys. 125, 709–713 (2017). https://doi.org/10.1134/S1063776117090023

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776117090023

Navigation