Skip to main content
Log in

Rayleigh convective instability in a cloud medium

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The problem of convective instability of an atmospheric layer containing a horizontally finite region filled with a cloud medium is considered. Solutions exponentially growing with time, i.e., solitary cloud rolls or spatially localized systems of cloud rolls, have been constructed. In the case of axial symmetry, their analogs are convective vortices with both ascending and descending motions on the axis and cloud clusters with ring-shaped convective structures. Depending on the anisotropy of turbulent exchange, the scale of vortices changes from the tornado scale to the scale of tropical cyclones. The solutions with descending motions on the axis can correspond to the formation of a tornado funnel or a hurricane eye in tropical cyclones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. N. Gutman, Introduction to Nonlinear Theory of Mesometeorological Processes (Gidrometeoizdat, Leningrad, 1969) [in Russian].

    Google Scholar 

  2. P. N. Belov, Practical Methods in Numerical Weather Forecasting (Gidrometeoizdat, Leningrad, 1967) [in Russian].

    Google Scholar 

  3. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Pergamon, New York, 1987).

    Google Scholar 

  4. G. Z. Gershuni and E. M. Zhukhovitskii, Convective Stability of Incompressible Fluids (Nauka, Moscow, 1972; Israel Program for Scientific Translations, Jerusalem, 1976).

    MATH  Google Scholar 

  5. M. Yamasaki, J. Met. Soc. Jpn. 50, 465 (1972).

    Article  ADS  Google Scholar 

  6. A. Delden, Beitr. Phys. Atmos. 58, 202 (1985).

    Google Scholar 

  7. T. Asai and I. Nakasui, J. Met. Soc. Jpn. 60, 425 (1992).

    Article  Google Scholar 

  8. T. Asai and I. Nakasui, J. Met. Soc. Jpn. 55, 151 (1977).

    Article  Google Scholar 

  9. M. Yamasaki, J. Met. Soc. Jpn. 52, 365 (1974).

    Article  Google Scholar 

  10. X. Y. Huanq, Tellus 42A, 270 (1990).

    Article  ADS  Google Scholar 

  11. A. Shlond, Beitr. Phys. Atmos. 61, 312 (1988).

    Google Scholar 

  12. X. Huang and E. Kallen, Tellus 38A, 381 (1986).

    Article  ADS  Google Scholar 

  13. C. S. Bretherton, J. Atmos. Sci. 44, 1809 (1987).

    Article  ADS  Google Scholar 

  14. S. M. Haque, Quart. J. R. Met. Soc. 78, 394 (1958).

    Article  ADS  Google Scholar 

  15. H. L. Kuo, Tellus 13, 441 (1961).

    Article  ADS  Google Scholar 

  16. D. K. Lilly, Mon. Wea. Rev. 88, 1 (1960).

    Article  ADS  Google Scholar 

  17. A. E. Gill, in Intensive Atmospheric Vortices, Ed. by L. Bengtsson and J. Lighthill (Springer, New York, 1985).

  18. V. P. Dymnikov, Izv. Akad. Nauk SSSR, Fiz. Atmosf. Okeana 14, 493 (1978).

    Google Scholar 

  19. B. Ya. Shmerlin and M. V. Kalashnik, Izv. Akad. Nauk SSSR, Fiz. Atmosf. Okeana 25, 421 (1989).

    Google Scholar 

  20. B. Ya. Shmerlin and M. V. Kalashnik, Izv. Akad. Nauk SSSR, Fiz. Atmosf. Okeana 25, 810 (1989).

    Google Scholar 

  21. M. V. Kalashnik and B. Ya. Shmerlin, Izv. Akad. Nauk SSSR, Fiz. Atmosf. Okeana 26, 787 (1990).

    Google Scholar 

  22. M. V. Kalashnik and B. Ya. Shmerlin, Izv. Akad. Nauk SSSR, Fiz. Atmosf. Okeana 26, 1034 (1990).

    Google Scholar 

  23. B. Ya. Shmerlin, M. V. Kalashnik, and M. B. Shmerlin, J. Exp. Theor. Phys. 115, 1111 (2012).

    Article  ADS  Google Scholar 

  24. B. Ya. Shmerlin and M. V. Kalashnik, Phys. Usp. 56, 473 (2013).

    Article  ADS  Google Scholar 

  25. A. E. Gill, Atmosphere-Ocean Dynamics (Elsevier, Amsterdam, 1982), Vol. 30.

    Google Scholar 

  26. L. T. Matveev, Atmosphere Physics (Gidrometeoizdat, Leningrad, 1984) [in Russian].

    Google Scholar 

  27. K. A. Emanuel, Atmospheric Convection (Oxford Univ. Press, New York, 1994).

    Google Scholar 

  28. B. Shmerlin, M. Kalashnik, and M. Shmerlin, Interdiscipl. J. Discontin., Nonlinearity, Complexity 4, 313 (2015).

    Article  Google Scholar 

  29. B. Ya. Shmerlin and M. B. Shmerlin, in Proceedings of the 11th All-Russia Workshop on Fundamental Problems of Theoretical and Applied Mechanics, Kazan, 2015, Ed. by A. M. Elizarov (Kazan. (Privolzhs.) Fed. Univ., Kazan, 2015), p. 4243.

  30. M. A. Novitskii, B. Ya. Shmerlin, S. A. Petrichenko, L. A. Tereb, L. K. Kulizhnikova, and O. V. Kalmykova, Russ. Meteorol. Hydrol. 40, 79 (2015).

    Article  Google Scholar 

  31. M. A. Novitskii, Yu. B. Pavlyukov, B. Ya. Shmerlin, S. V. Makhnorylova, N. I. Serebryannik, S. A. Petrichenko, L. A. Tereb, and O. V. Kalmykova, Russ. Meteorol. Hydrol. 41, 683 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Ya. Shmerlin.

Additional information

Original Russian Text © B.Ya. Shmerlin, M.B. Shmerlin, 2017, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 152, No. 3, pp. 589–606.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shmerlin, B.Y., Shmerlin, M.B. Rayleigh convective instability in a cloud medium. J. Exp. Theor. Phys. 125, 502–517 (2017). https://doi.org/10.1134/S1063776117080180

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776117080180

Navigation