Journal of Experimental and Theoretical Physics

, Volume 125, Issue 2, pp 268–277 | Cite as

Relaxation of vacuum energy in q-theory

Nuclei, Particles, Fields, Gravitation, and Astrophysics
  • 29 Downloads

Abstract

The q-theory formalism aims to describe the thermodynamics and dynamics of the deep quantum vacuum. The thermodynamics leads to an exact cancellation of the quantum-field zero-point-energies in equilibrium, which partly solves the main cosmological constant problem. But, with reversible dynamics, the spatially flat Friedmann–Robertson–Walker universe asymptotically approaches the Minkowski vacuum only if the Big Bang already started out in an initial equilibrium state. Here, we extend q-theory by introducing dissipation from irreversible processes. Neglecting the possible instability of a de-Sitter vacuum, we obtain different scenarios with either a de-Sitter asymptote or collapse to a final singularity. The Minkowski asymptote still requires fine-tuning of the initial conditions. This suggests that, within the q-theory approach, the decay of the de-Sitter vacuum is a necessary condition for the dynamical solution of the cosmological constant problem.

References

  1. 1.
    S. Weinberg, Rev Mod. Phys. 61, 1 (1989).ADSCrossRefGoogle Scholar
  2. 2.
    A. M. Polyakov, Nucl Phys. B 797, 199 (2008); arXiv:0709.2899.ADSCrossRefGoogle Scholar
  3. 3.
    A. M. Polyakov, Nucl Phys. B 834, 316 (2010); arXiv:0912.5503.ADSCrossRefGoogle Scholar
  4. 4.
    D. Krotov and A. M. Polyakov, Nucl Phys. B 849, 410 (2011); arXiv:1012.2107.ADSCrossRefGoogle Scholar
  5. 5.
    A. A. Starobinsky and J. Yokoyama, Phys Rev. D 50, 6357 (1994); arXiv:astro-ph/9407016.ADSCrossRefGoogle Scholar
  6. 6.
    V. Mukhanov, Physical Foundations of Cosmology (Cambridge Univ. Press, Cambridge, UK, 2005).CrossRefMATHGoogle Scholar
  7. 7.
    A. F. Volkov and S. M. Kogan, Sov Phys. JETP 38, 1018 (1974).ADSGoogle Scholar
  8. 8.
    R. A. Barankov, L. S. Levitov, and B. Z. Spivak, Phys Rev. Lett. 93, 160401 (2004).ADSCrossRefGoogle Scholar
  9. 9.
    E. A. Yuzbashyan, B. L. Altshuler, V. B. Kuznetsov, and V. Z. Enolskii Phys. Rev. B 72, 220503 (2005); arXiv:cond-mat/0505493.ADSCrossRefGoogle Scholar
  10. 10.
    E. A. Yuzbashyan, Phys Rev. B 78, 184507 (2008); arXiv:0807.3181.ADSCrossRefGoogle Scholar
  11. 11.
    V. Gurarie, Phys Rev. Lett. 103, 075301 (2009); arXiv:0905.4498.ADSCrossRefGoogle Scholar
  12. 12.
    E. A. Yuzbashyan, M. Dzero, V. Gurarie, and M. S. Foster, Phys Rev. A 91, 033628 (2015); arXiv:1412.7165.ADSCrossRefGoogle Scholar
  13. 13.
    R. Matsunaga, Y. I. Hamada, K. Makise, Y. Uzawa, H. Terai, Z. Wang, and R. Shimano, Phys Rev. Lett. 111, 057002 (2013); arXiv:1305.0381.ADSCrossRefGoogle Scholar
  14. 14.
    R. Matsunaga, N. Tsuji, H. Fujita, A. Sugioka, K. Makise, Y. Uzawa, H. Terai, Z. Wang, H. Aoki, and R. Shimano, Science 345, 1145 (2014).ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    F. R. Klinkhamer and G. E. Volovik, Phys Rev. D 77, 085015 (2008); arXiv:0711.3170.ADSCrossRefGoogle Scholar
  16. 16.
    F. R. Klinkhamer and G. E. Volovik, Phys Rev. D 78, 063528 (2008); arXiv:0806.2805.ADSCrossRefGoogle Scholar
  17. 17.
    F. R. Klinkhamer and G. E. Volovik, JETP Lett. 91, 259 (2010); arXiv:0907.4887.ADSCrossRefGoogle Scholar
  18. 18.
    F. R. Klinkhamer and G. E. Volovik, JETP Lett. 103, 627 (2016); arXiv:1604.06060.ADSCrossRefGoogle Scholar
  19. 19.
    M. J. Duff and P. van Nieuwenhuizen, Phys Lett. B 94, 179 (1980).ADSCrossRefGoogle Scholar
  20. 20.
    A. Aurilia, H. Nicolai, and P. K. Townsend, Nucl Phys. B 176, 509 (1980).ADSCrossRefGoogle Scholar
  21. 21.
    S. W. Hawking, Phys Lett. B 134, 403 (1984).ADSCrossRefGoogle Scholar
  22. 22.
    M. Henneaux and C. Teitelboim, Phys Lett. B 143, 415 (1984).ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    M. J. Duff, Phys Lett. B 226, 36 (1989).ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    M. J. Duncan and L. G. Jensen, Nucl Phys. B 336, 100 (1990).ADSCrossRefGoogle Scholar
  25. 25.
    R. Bousso and J. Polchinski, J. High Energy Phys. 0006, 006 (2000); arXiv:hep-th/0004134.ADSCrossRefGoogle Scholar
  26. 26.
    A. Aurilia and E. Spallucci, Phys Rev. D 69, 105004 (2004); arXiv:hep-th/0402096.ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Z. C. Wu, Phys Lett. B 659, 891 (2008), arXiv:0709.3314.ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Ya. B. Zel’dovich and A. A. Starobinsky, JETP Lett. 26, 252 (1977).ADSGoogle Scholar
  29. 29.
    N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space (Cambridge Univ. Press, Cambridge, UK, 1982).CrossRefMATHGoogle Scholar
  30. 30.
    L. Kofman, A. Linde, and A. A. Starobinsky, Phys Rev. D 56, 3258 (1997).ADSCrossRefGoogle Scholar
  31. 31.
    A. Dobado and A. L. Maroto, Phys Rev. D 60, 104045 (1999); arXiv:gr-qc/9803076.ADSCrossRefGoogle Scholar
  32. 32.
    F. R. Klinkhamer, Mod Phys. Lett. A 27, 1250150 (2012); arXiv:1205.7072.ADSCrossRefGoogle Scholar
  33. 33.
    F. R. Klinkhamer and G. E. Volovik, Mod Phys. Lett. A 31, 1650160 (2016); arXiv:1601.00601.ADSCrossRefGoogle Scholar
  34. 34.
    V. Ts. Gurovich and A. A. Starobinsky, Sov Phys. JETP 50, 844 (1979).ADSGoogle Scholar
  35. 35.
    A. A. Starobinsky, Sov Astron. Lett. 7, 36 (1981).ADSGoogle Scholar
  36. 36.
    A. de Felice, K. Karwan, and P. Wongjun, Phys Rev. D 86, 103526 (2012); arXiv:1209.5156.ADSCrossRefGoogle Scholar
  37. 37.
    E. T. Akhmedov, Int J. Mod. Phys. D 23, 1430001 (2014); arXiv:1309.2557.ADSCrossRefGoogle Scholar
  38. 38.
    P. J. Steinhardt and N. Turok, Science 296, 1436 (2002); arXiv:hep-th/0111030.ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • F. R. Klinkhamer
    • 1
  • M. Savelainen
    • 2
  • G. E. Volovik
    • 2
    • 3
  1. 1.Institute for Theoretical PhysicsKarlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Low Temperature Laboratory, Department of Applied, PhysicsAalto UniversityAaltoFinland
  3. 3.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations