Skip to main content
Log in

Electrostatic interaction of macroparticles in a plasma in the strong screening regime

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We have studied the electrostatic interaction of spherical particles in an equilibrium plasma or an electrolyte in the moderate and strong screening regimes when the macroparticle size is comparable with or much larger than the Debye screening radius. We have developed an approximate theory of the electrostatic interaction of macroparticles in the case of constant potentials of their surfaces in the weak or moderate screening regimes. In this theory, the charges of macroparticles with a fixed spacing between them are determined using vacuum capacitive coefficients, which are corrected taking into account the plasma screening effects. The force of interaction with the resultant charges is calculated based on the solution of the problem of interaction in a homogeneous dielectric (vacuum) and is multiplied by the plasma factor. We have also obtained an approximate solution to the problem in the strong screening regime. Comparison with the exact solution has demonstrated high accuracy of the proposed methods of calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ivlev, H. Löen, G. Morfill, and C. P. Royall, Complex Plasmas and Colloidal Dispersions: Particle-Resolved Studies of Classical Liquids and Solids, Vol. 5 of Series in Soft Condensed Matter (World Scientific, Singapore, 2012).

    Book  Google Scholar 

  2. F. Babick, in Suspensions of Colloidal Particles and Aggregates, Vol. 20 of Particle Technology Series (Springer International, Switzerland, 2016), p. 75.

    Google Scholar 

  3. H. Ohshima, in Encyclopedia of Biocolloid and Biointerface Science (Wiley, Hoboken, NJ, USA, 2016).

    Book  Google Scholar 

  4. C. Chen and W. Huang, Environ. Sci. Technol. 51, 2077 (2017).

    Article  ADS  Google Scholar 

  5. A. V. Filippov, A. F. Pal’, and A. N. Starostin, J. Exp. Theor. Phys. 121, 909 (2015).

    Article  ADS  Google Scholar 

  6. A. V. Filippov and I. N. Derbenev, J. Exp. Theor. Phys. 123, 1099 (2016).

    Article  ADS  Google Scholar 

  7. I. N. Derbenev, A. V. Filippov, A. J. Stace, and E. Besley, J. Chem. Phys. 145, 084103 (2016).

    Article  ADS  Google Scholar 

  8. C. Peng, W. Zhang, H. Gao, et al., Nanomaterials 7, 21 (2017).

    Article  Google Scholar 

  9. V. K. Sharma, K. M. Siskova, R. Zboril, and J. L. Gardea-Torresdey, Adv. Coll. Interface Sci. 204, 15 (2014).

    Article  Google Scholar 

  10. K. A. Huynh and K. L. Chen, Environ. Sci. Technol. 45, 5564 (2011).

    Article  ADS  Google Scholar 

  11. A. R. Petosa, D. P. Jaisi, I. R. Quevedo, et al., Environ. Sci. Technol. 44, 6532 (2010).

    Article  ADS  Google Scholar 

  12. A. M. Mikelonis, S. Youn, and D. F. Lawler, Langmuir 32, 1723 (2016).

    Article  Google Scholar 

  13. B. Derjaguin, Trans. Faraday Soc. 35, 203 (1940).

    Article  Google Scholar 

  14. R. Hogg, T. W. Healy, and D. W. Fuerstenau, Trans. Faraday Soc. 62, 1638 (1966).

    Article  Google Scholar 

  15. S. Usui, J. Coll. Interface Sci. 44, 107 (1973).

    Article  ADS  Google Scholar 

  16. M. E. Fisher, Y. Levin, and X. Li, J. Chem. Phys. 101, 2273 (1994).

    Article  ADS  Google Scholar 

  17. P. Debye and E. Hückel, Phys. Zeitschr. 24, 185 (1923).

    Google Scholar 

  18. E. Verwey, J. T. G. Overbeek, and K. V. Ness, Theory of the Stability of Lyophobic Colloids. The Interaction of Sol Particles Having an Electrical Double Layer (Elsevier, New York, Amsterdam, London, Brussels, 1948).

    Google Scholar 

  19. A. E. Larsen and D. G. Grier, Nature 385, 230 (1997).

    Article  ADS  Google Scholar 

  20. V. R. Munirov and A. V. Filippov, J. Exp. Theor. Phys. 117, 809 (2013).

    Article  ADS  Google Scholar 

  21. A. V. Filippov, J. Exp. Theor. Phys. 109, 516 (2009).

    Article  ADS  Google Scholar 

  22. A. V. Filippov, Contrib. Plasma Phys. 49, 433 (2009).

    ADS  Google Scholar 

  23. V. V. Batygin and I. N. Toptygin, Collection of Problems in Electrodynamics (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  24. W. R. Smythe, Static and Dynamic Electricity (McGraw-Hill, New York, Toronto, London, 1950).

    MATH  Google Scholar 

  25. A. Russell, Proc. R. Soc. London A 82, 524 (1909).

    Article  ADS  Google Scholar 

  26. J. Lekner, J. Electrostat. 69, 11 (2011).

    Article  Google Scholar 

  27. P. J. Davis, in Handbook of Mathematical Functions, Ed. by M. Abramowitz and I. A. Stegun (NBS, Washington, 1972).

  28. V. R. Munirov and A. V. Filippov, J. Exp. Theor. Phys. 115, 527 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Filippov.

Additional information

Original Russian Text © A.V. Filippov, I.N. Derbenev, A.A. Pautov, M.M. Rodin, 2017, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 152, No. 3, pp. 607–619.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filippov, A.V., Derbenev, I.N., Pautov, A.A. et al. Electrostatic interaction of macroparticles in a plasma in the strong screening regime. J. Exp. Theor. Phys. 125, 518–529 (2017). https://doi.org/10.1134/S1063776117080040

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776117080040

Navigation