Centrality dependence of particle yields and their ratios at RHIC experiments

Nuclei, Particles, Fields, Gravitation, and Astrophysics

Abstract

The collision centrality dependence of the yields per unit rapidity dN/dy along with their ratios for various hadrons produced in Au+Au collisions at different collision energies have been studied within the framework of unified statistical thermal freeze-out model (USTFM) taking into account both longitudinal and transverse hydrodynamic flows. Bulk freeze-out properties in terms of the thermal parameters, temperature and mid-rapidity baryon chemical potential at chemical freeze-out, obtained within the proposed model, which are in agreement with experimental data. The extracted chemical freeze-out temperature is found to depend weakly on the collision centrality. It is also found that this temperature is almost independent of the collision energies considered in this work. The closeness of the freeze-out temperature to the predicted phase-transition temperature suggests that the chemical freeze-out happens near hadronization. Furthermore, the dependence of the mid-rapidity chemical potential on the collision energy at different centralities, as well as the centrality dependence of the mid-rapidity size of the system in terms of the transverse size of the system, has been studied at the RHIC. The effect of resonance decay contributions has also been taken into account.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    U. W. Heinz, Nucl. Phys. A 661, 140 (1999).ADSCrossRefGoogle Scholar
  2. 2.
    F. Becattini, Z. Phys. C 69, 485 (1996)CrossRefGoogle Scholar
  3. 2a.
    F. Becattini and U. Heinz, Z. Phys. C 76, 269 (1997)CrossRefGoogle Scholar
  4. 2b.
    F. Becattini and G. Passaleva, Eur. Phys. J. C 23, 551 (2002)ADSCrossRefGoogle Scholar
  5. 2c.
    F. Becattini, Nucl. Phys. A 702, 336 (2002).ADSCrossRefGoogle Scholar
  6. 3.
    M. van Leeuwen et al. (NA49 Collab.), Nucl. Phys. A 715, 161c (2003).ADSCrossRefGoogle Scholar
  7. 4.
    F. Becattini, J. Manninen, and M. Gazdzicki, Phys. Rev. C 73, 044905 (2006).ADSCrossRefGoogle Scholar
  8. 5.
    I. Kraus, J. Cleymans, H. Oeschler, K. Redlich, and S. Wheaton, Phys. Rev. C 76, 064903 (2007).ADSCrossRefGoogle Scholar
  9. 6.
    J. Cleymans and K. Redlich, Phys. Rev. Lett. 81, 5284 (1998)ADSCrossRefGoogle Scholar
  10. 6a.
    J. Cleymans and K. Redlich, Phys. Rev. C 60, 054908 (1999).ADSCrossRefGoogle Scholar
  11. 7.
    B. Biedron and W. Broniowski, Phys. Rev. C 75, 054905 (2007).ADSCrossRefGoogle Scholar
  12. 8.
    S. Uddin et al., J. Phys. G 39, 015012 (2012)ADSCrossRefGoogle Scholar
  13. 8a.
    S. Uddin et al., Nucl. Phys. A 934, 121 (2015)ADSCrossRefGoogle Scholar
  14. 8b.
    S. Uddin et al., Adv. High Energy Phys. 154853 (2015)Google Scholar
  15. 8c.
    Riyaz Ahmed Bhat et al., Nucl. Phys. A 935, 43 (2015).ADSCrossRefGoogle Scholar
  16. 9.
    P. Koch, B. Muller, and J. Rafelski, Phys. Rep. 142, 187 (1986).ADSCrossRefGoogle Scholar
  17. 10.
    B. I. Abelev et al. (STAR Collab.), Phys. Rev. C 79, 034909 (2009).ADSCrossRefGoogle Scholar
  18. 11.
    S. K. Tiwari and C. P. Singh, Adv. High Energy Phys. 2013, 805413 (2013).CrossRefGoogle Scholar
  19. 12.
    J. Noronha-Hostler, H. Ahmad, J. Noronha, and C. Greiner, Phys. Rev. C 82, 024913 (2010).ADSCrossRefGoogle Scholar
  20. 13.
    J. Cleymans, B. Kampfer, M. Kaneta, S. Wheaton, and N. Xu, Phys. Rev. C 71, 054901 (2005).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Department of PhysicsIslamic University of Science and TechnologyPulwama, KashmirIndia

Personalised recommendations