Journal of Experimental and Theoretical Physics

, Volume 125, Issue 2, pp 175–188 | Cite as

Extraordinary light transmission through a metal film perforated by a subwavelength hole array

  • A. A. Zyablovskii
  • A. A. Pavlov
  • V. V. Klimov
  • A. A. Pukhov
  • A. V. Dorofeenko
  • A. P. Vinogradov
  • A. A. Lisyanskii
Atoms, Molecules, Optics

Abstract

It is shown that, depending on the incident wave frequency and the system geometry, the extraordinary transmission of light through a metal film perforated by an array of subwavelength holes can be described by one of the three mechanisms: the “transparency window” in the metal, excitation of the Fabry–Perot resonance of a collective mode produced by the hybridization of evanescence modes of the holes and surface plasmons, and excitation of a plasmon on the rear boundary of the film. The excitation of a plasmon resonance on the front boundary of the metal film does not make any substantial contribution to the transmission coefficient, although introduces a contribution to the reflection coefficient.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, et al., Nature 391, 667 (1998).ADSCrossRefGoogle Scholar
  2. 2.
    H. F. Ghaemi, T. Thio, D. E. Grupp, et al., Phys Rev. B 58, 6779 (1998).ADSCrossRefGoogle Scholar
  3. 3.
    F. J. Garcia de Abajo, Rev Mod. Phys. 79, 1267 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, et al., Rev Mod. Phys. 82, 729 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    H. J. Lezec, A. Degiron, E. Devaux, et al., Science 297, 820 (2002).ADSCrossRefGoogle Scholar
  6. 6.
    H. A. Bethe, Phys Rev. 66, 163 (1944).ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    C. J. Bouwkamp, Philips Res. Rep. 5, 321 (1950).Google Scholar
  8. 8.
    C. J. Bouwkamp, Philips Res. Rep. 5, 401 (1950).Google Scholar
  9. 9.
    T. Thio, K. M. Pellerin, R. A. Linke, et al., Opt Lett. 26, 1972 (2001).ADSCrossRefGoogle Scholar
  10. 10.
    T. Thio, H. J. Lezec, T. W. Ebbesen, et al., Nanotechnology 13, 429 (2002).ADSCrossRefGoogle Scholar
  11. 11.
    S.-H. Chang, S. K. Gray, and G. C. Schatz, Opt Express 13, 3150 (2005).ADSCrossRefGoogle Scholar
  12. 12.
    F. J. García-Vidal, E. Moreno, J. A. Porto, et al., Phys Rev. Lett. 95, 103901 (2005).ADSCrossRefGoogle Scholar
  13. 13.
    A. J. L. Adam, J. M. Brok, M. A. Seo, et al., Opt Express 16, 7407 (2008).ADSCrossRefGoogle Scholar
  14. 14.
    F. J. García-Vidal, L. Martín-Moreno, E. Moreno, et al., Phys Rev. B 74, 153411 (2006).ADSCrossRefGoogle Scholar
  15. 15.
    S. B. Cohn, Proc IRE 40, 783 (1952).CrossRefGoogle Scholar
  16. 16.
    J. A. Porto, F. J. García-Vidal, and J. B. Pendry, Phys Rev. Lett. 83, 2845 (1999).ADSCrossRefGoogle Scholar
  17. 17.
    L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, et al., Phys Rev. Lett. 86, 1114 (2001).ADSCrossRefGoogle Scholar
  18. 18.
    U. Schroter and D. Heitmann, Phys Rev. B 58, 419 (1998).CrossRefGoogle Scholar
  19. 19.
    Z. Ruan and M. Qiu, Phys Rev. Lett. 96, 233901 (2006).ADSCrossRefGoogle Scholar
  20. 20.
    E. Popov, M. Neviere, S. Enoch, et al., Phys Rev. B 62, 16100 (2000).ADSCrossRefGoogle Scholar
  21. 21.
    Q. Cao and P. Lalanne, Phys Rev. Lett. 88, 057403 (2002).ADSCrossRefGoogle Scholar
  22. 22.
    A. D. Rakic, A. B. Djurisic, and J. M. Elazar, Appl Opt. 37, 5271 (1998).ADSCrossRefGoogle Scholar
  23. 23.
    O. Airy, Essex Papers (Camden Society, London, 1890).Google Scholar
  24. 24.
    C. A. Pfeiffer, E. N. Economou, and K. L. Ngai, Phys Rev. B 10, 3038 (1974).ADSCrossRefGoogle Scholar
  25. 25.
    J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941), p. 526.MATHGoogle Scholar
  26. 26.
    L. A. Vainshtein, The Theory of Diffraction and the Factorization Method: Generalized Wiener-Hopf Technique, Golem Series in Electromagnetics (Sovetskoe Radio, Moscow, 1966; Golem, Boulder, CO, 1969), rus. p. 155.Google Scholar
  27. 27.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Fizmatlit, Moscow, 2005; Pergamon, New York, 1984), rus. p. 458.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • A. A. Zyablovskii
    • 1
    • 2
  • A. A. Pavlov
    • 1
  • V. V. Klimov
    • 1
    • 4
    • 5
  • A. A. Pukhov
    • 1
    • 2
    • 3
  • A. V. Dorofeenko
    • 1
    • 2
    • 3
  • A. P. Vinogradov
    • 1
    • 2
    • 3
  • A. A. Lisyanskii
    • 6
    • 7
  1. 1.Dukhov All-Russian Research Institute of AutomaticsMoscowRussia
  2. 2.Moscow Institute of Physics and Technology (State University)Dolgoprudnyi, Moscow oblastRussia
  3. 3.Institute of Theoretical and Applied ElectrodynamicsRussian Academy of SciencesMoscowRussia
  4. 4.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  5. 5.National Research Nuclear University “MEPhI”MoscowRussia
  6. 6.Department of PhysicsQueens College of the City University of New YorkNew YorkUSA
  7. 7.DuThe Graduate Center of the City University of New YorkNew YorkUSA

Personalised recommendations