Skip to main content
Log in

Anisotropic features of two-dimensional hydrogen atom in magnetic field

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The aim of this study is the numerical research of anisotropic characteristics of a two-dimensional (2D) hydrogen atom induced by a magnetic field. The ground state energy (GSE) of the 2D hydrogen atom and the corresponding wavefunction have been numerically calculated in the Born–Oppenheimer approximation and taking into account the finite proton mass. The nonlinear dependence of the GSE on angle α between the magnetic field vector and the normal to the electron motion plane has been found in a wide range of the magnetic field. The effect of a significant reduction of the GSE (up to 1.9-fold) is observed with increasing the angle α up to 90°. The agreement with experimental data has been demonstrated. The dependences of the GSE of a 2D exciton in GaAs/Al0.33Ga0.67As have been determined for various tilt angles and magnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973).

    Article  ADS  Google Scholar 

  2. Yu. A. Bychkov, S. V. Iordanskii, and G. M. Eliashberg, JETP Lett. 33, 143 (1981).

    ADS  Google Scholar 

  3. C. Kallin and B. I. Halperin, Phys. Rev. B 30, 5655 (1984).

    Article  ADS  Google Scholar 

  4. L. W. Engel, S. W. Hwang, T. Sajoto, et al., Phys. Rev. B 45, 3418 (1992).

    Article  ADS  Google Scholar 

  5. J. P. Eisenstein, G. S. Boebinger, L. N. Pfeiffer, et al., Phys. Rev. Lett. 68, 1383 (1992).

    Article  ADS  Google Scholar 

  6. S. Uji, H. Shinagawa, T. Terashima, et al., Nature 410, 908 (2001).

    Article  ADS  Google Scholar 

  7. J. O. Sofo, A. S. Chaudhari, and G. D. Barber, Phys. Rev. B 75, 153401 (2007).

    Article  ADS  Google Scholar 

  8. D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, et al., Science 323, 610 (2009).

    Article  ADS  Google Scholar 

  9. B. Zaslow and M. E. Zandler, Am. J. Phys. 35, 1118 (1967).

    Article  ADS  Google Scholar 

  10. J. W.-K. Huang and A. Kozycki, Am. J. Phys. 47, 1005 (1979).

    Article  ADS  Google Scholar 

  11. G. Q. Hassoun, Am. J. Phys 49, 143 (1981).

    Article  ADS  Google Scholar 

  12. X. Yang, S. Guo, F. Chan, et al., Phys. Rev. A 43, 1186 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  13. W. Kohn and J. M. Luttinger, Phys. Rev. 98, 915 (1955).

    Article  ADS  Google Scholar 

  14. R. Chen, J. P. Cheng, D. L. Lin, et al., Phys. Rev. B 44, 8315 (1991).

    Article  ADS  Google Scholar 

  15. V. M. Villalba and R. Pino, J. Phys.: Condens. Matter 8, 8067 (1996).

    ADS  Google Scholar 

  16. A. Soylu and I. Boztosun, Physica B 396, 150 (2007).

    Article  ADS  Google Scholar 

  17. D. G. W. Parfitt and M. E. Portnoi, J. Math. Phys. 43, 4681 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  18. A. Cisneros, J. Math. Phys. 10, 277 (1969).

    Article  ADS  Google Scholar 

  19. M. Robnik, J. Phys. A 14, 3195 (1981).

    Article  ADS  Google Scholar 

  20. A. H. MacDonald and D. S. Ritchie, Phys. Rev. B 33, 8336 (1986).

    Article  ADS  Google Scholar 

  21. A. Soylu, O. Bayrak, and I. Boztosun, Int. J. Mod. Phys. E 15, 1263 (2006).

    Article  ADS  Google Scholar 

  22. M. A. Escobar-Ruiz and A. V. Turbiner, Ann. Phys. (N.Y.) 340, 37 (2014).

    Article  ADS  Google Scholar 

  23. M. A. Escobar-Ruiz and A. V. Turbiner, Ann. Phys. (N.Y.) 359, 405 (2015).

    Article  Google Scholar 

  24. M. Taut, J. Phys. A 28, 2081 (1995).

  25. M. G. Dimova, M. S. Kaschiev, and S. I. Vinitsky, J. Phys. B 38, 2337 (2005).

    Article  ADS  Google Scholar 

  26. O. Chuluunbaatar, A. A. Gusev, V. L. Derbov, et al., J. Phys. A 40, 11485 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  27. M. Robnik and V. G. Romanovski, J. Phys. A 36, 7923 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  28. H. Ruder, G. Wunner, H. Herold, et al., Atoms in Strong Magnetic Fields (Springer Science, New York, 2012).

    MATH  Google Scholar 

  29. V. S. Melezhik, J. Comput. Phys. 92, 67 (1991).

    Article  ADS  Google Scholar 

  30. E. A. Koval, O. A. Koval, and V. S. Melezhik, Phys. Rev. A 89, 052710 (2014).

    Article  ADS  Google Scholar 

  31. N. N. Kalitkin, Numerical Methods (BKhV, St. Petersburg, 2011) [in Russian].

    Google Scholar 

  32. I. M. Gelfand and S. V. Fomin, Calculus of Variations (Dover, New York, 2000).

    MATH  Google Scholar 

  33. T. Frostad, J. P. Hansen, C. J. Wesslén, et al., Eur. Phys. J. B 86, 430 (2013).

    Article  ADS  Google Scholar 

  34. N. N. Kalitkin, A. B. Al’shin, E. A. Al’shina, et al., Computations on Quasi-Uniform Grids (Fizmatlit, Moscow, 2005) [in Russian].

    Google Scholar 

  35. L. V. Butov, C. W. Lai, D. S. Chemla, et al., Phys. Rev. Lett. 87, 216804 (2001).

    Article  ADS  Google Scholar 

  36. Yu. E. Lozovik, I. V. Ovchinnikov, S. Yu. Volkov, et al., Phys. Rev. B 65, 235304 (2002).

    Article  ADS  Google Scholar 

  37. P. S. Drouvelis, P. Schmelcher, and F. K. Diakonos, Phys. Rev. B 69, 035333 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Koval.

Additional information

Original Russian Text © E.A. Koval, O.A. Koval, 2017, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 152, No. 1, pp. 45–53.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koval, E.A., Koval, O.A. Anisotropic features of two-dimensional hydrogen atom in magnetic field. J. Exp. Theor. Phys. 125, 35–42 (2017). https://doi.org/10.1134/S106377611707007X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377611707007X

Navigation