Skip to main content
Log in

Mössbauer study of the modulated magnetic structure of FeVO4

  • Order, Disorder, and Phase Transition in Condensed System
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Mössbauer spectroscopy is used to study the FeVO4 multiferroic, which undergoes two magnetic phase transitions at T N1 ≈ 22 K and T N2 ≈ 15 K. The first transition (T N1) is related to transformation from a paramagnetic state into a magnetically ordered state of a spin density wave, and the second transition (T N2) is associated with a change in the type of the spatial magnetic structure of the vanadate. The electric field gradient tensor at 57Fe nuclei is calculated to perform a crystal-chemical identification of the partial Mössbauer spectra corresponding to various crystallographic positions of Fe3+ cations. The spectra measured in the range T N2 < T < T N1 are analyzed on the assumption about amplitude modulation of the magnetic moments of iron atoms μFe. The results of model intersection of the spectra recorded at T < T N2 point to a high degree of anharmonicity of the helicoidal magnetic structure of the vanadate and to elliptic polarization of μFe. These features are characteristic of type-II multiferroics. The temperature dependences of the hyperfine interaction parameters of 57Fe nuclei that were obtained in this work are analyzed in terms of the Weiss molecular field model on the assumption of orbital contribution to the magnetic moments of iron cations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Dixit, G. Lawes, and A. B. Harris, Phys. Rev. B 82, 024430 (2010)

    Article  ADS  Google Scholar 

  2. L. Zhao, M. P. Y. Wu, K.-W. Yeh, et al., Solid State Comm. 151, 1728 (2011).

    Article  ADS  Google Scholar 

  3. B. Robertson and E. Kostiner, J. Solid State Chem. 4, 29 (1972).

    Article  ADS  Google Scholar 

  4. A. Daoud-Aladine, B. Kundys, C. Martin, P. G. Radaelli, P. J. Brown, C. Simon, and L. C. Chapon, Phys. Rev. B 80, 220402(R) (2009).

    Article  ADS  Google Scholar 

  5. T. Kimura and Y. Tokura, J. Phys.: Condens. Matter 20, 434204 (2008).

    ADS  Google Scholar 

  6. T. Arima, J. Phys. Soc. Jpn. 76, 073702 (2007).

    Article  ADS  Google Scholar 

  7. A. Dixit and G. Lawes, J. Phys.: Condens. Matter 21, 456003 (2009).

    ADS  Google Scholar 

  8. Z. He, J.-H. Yamaura, and Y. Ueda, J. Solid State Chem. 181, 2346 (2008).

    Article  ADS  Google Scholar 

  9. P. Bonwille, Rev. Phys. Appl. 18, 365 (1983).

    Article  Google Scholar 

  10. J. Zhang, L. Ma, J. Dai, et al., Phys. Rev. B 89, 174412 (2014).

    Article  ADS  Google Scholar 

  11. B. Robertson and E. Kostiner, J. Solid State Chem. 4, 29 (1972).

    Article  ADS  Google Scholar 

  12. L. M. Levinson and B. M. Wanklyn, J. Solid State Chem. 3, 131 (1971).

    Article  ADS  Google Scholar 

  13. D. Colson, A. Forget, and P. Bonville, J. Magn. Magn. Mater. 378, 529 (2015).

    Article  ADS  Google Scholar 

  14. A. V. Zalesskii, A. A. Frolov, A. K. Zvezdin, A. A. Gippius, E. N. Morozova, D. F. Khozeev, A. S. Bush, and V. S. Pokatilov, J. Exp. Theor. Phys. 95, 101 (2002)

    Article  ADS  Google Scholar 

  15. A.V. Zalesskii, A. K. Zvezdin, A. A. Frolov, and A. A. Bush, JETP Lett. 71, 465 (2000).

    Article  ADS  Google Scholar 

  16. V. S. Rusakov, V. S. Pokatilov, A. S. Sigov, M. E. Matsnev, and T. V. Gubaidulina, JETP Lett. 100, 463 (2014).

    Article  ADS  Google Scholar 

  17. V. S. Rusakov, I. A. Presnyakov, A. V. Sobolev, A. M. Gapochka, M. E. Matsnev, and A. A. Belik, JETP Lett. 98, 544 (2013)

    Article  ADS  Google Scholar 

  18. I. Presniakov, V. Rusakov, A. Sobolev, et al., Hyperfine Interact. 226, 41 (2014).

    Article  ADS  Google Scholar 

  19. M. E. Matsnev and V. S. Rusakov, AIP Conf. Proc. 1489, 178 (2012)

    Article  ADS  Google Scholar 

  20. M. E. Matsnev and V. S. Rusakov, AIP Conf. Proc. 1622, 40 (2014).

  21. R. R. Sharma, Phys. Rev. B 6, 4310 (1972).

    Article  ADS  Google Scholar 

  22. P. Gütlich, E. Bill, and A. X. Trautwein, Mössbauer Spectroscopy and Transition Metal Chemistry Fundamentals and Applications (Springer, Berlin, Heidelberg, 2011).

    Book  Google Scholar 

  23. F. Menil, J. Phys. Chem. Solids 46, 763 (1985).

    Article  ADS  Google Scholar 

  24. V. M. Buznik, Glass Phys. Chem. 26, 1 (2000).

    Google Scholar 

  25. S. Morup, D. E. Madsen, C. Frandsen, C. R. H. Bahl, and M. F. Hansen, J. Phys.: Condens. Matter 19, 213202 (2007).

    ADS  Google Scholar 

  26. K. Yosida, Progr. Theor. Phys. 6, 691 (1951).

    Article  ADS  Google Scholar 

  27. J.-Y. Kim, T. Y. Koo, and J. H. Park, Phys. Rev. Lett. 96, 047205 (2006).

    Article  ADS  Google Scholar 

  28. N. Terada, D. D. Khalyavin, P. Manuel, et al., Phys. Rev. Lett. 109, 097203 (2012).

    Article  ADS  Google Scholar 

  29. G. A. Sawatzky and F. van der Woude, J. Phys. 35, C6–47 (1974).

    Google Scholar 

  30. A. M. L. Lopes, G. N. P. Oliveira, T. M. Mendonça, J. Agostinho Moreira, A. Almeida, J. P. Araújo, V. S. Amaral, and J. G. Correia, Phys. Rev. B 84, 014434 (2011).

    Article  ADS  Google Scholar 

  31. M. Soda, K. Kimura, T. Kimura, M. Matsuura, and K. Hirota, J. Phys. Soc. Jpn. 78, 124703 (2009)

    Article  ADS  Google Scholar 

  32. M. Frontzek, J. T. Haraldsen, A. Podlesnyak, M. Matsuda, A. D. Christianson, R. S. Fishman, A. S. Sefat, Y. Qiu, J. R. D. Copley, S. Barilo, S. V. Shiryaev, and G. Ehlers, Phys. Rev. B 84, 094448 (2011).

    Article  ADS  Google Scholar 

  33. N. Terada, J. Phys.: Condens. Matter 26, 453202 (2014).

    ADS  Google Scholar 

  34. L. J. Chang, D. J. Huang, W.-H. Li, S.-W. Cheong, W. Ratcliff, and J. W. Lynn, J. Phys.: Condens. Matter 21, 456008 (2009).

    Google Scholar 

  35. M. Pregelj, O. Zaharko, A. Zorco, Z. Kutnjak, et al., Phys. Rev. Lett. 103, 147202 (2009)

    Article  ADS  Google Scholar 

  36. M. Pregelj, A. Zorco, O. Zaharko, et al., Phys. Rev. Lett. 109, 227202 (2012).

    Article  ADS  Google Scholar 

  37. S. M. Dubiel, J. Alloys Compd. 488, 18 (2009).

  38. A. Blachowski, K. Ruebenbauer, J. Zukrowski, et al., Phys. Rev. B 83, 134410 (2011).

    Article  ADS  Google Scholar 

  39. J. Jensen, J. Phys. F: Met. Phys. 6, 1145 (1976).

    Article  ADS  Google Scholar 

  40. H. Miwa and K. Yosida, Prog. Theor. Phys. 26, 693 (1961).

    Article  ADS  Google Scholar 

  41. J. A. Blanco, D. Schmitt, and J. C. Gomez Sal, J. Magn. Magn. Mater. 116, 128 (1992).

    Article  ADS  Google Scholar 

  42. J. A. Blanco, B. Fåk, E. Ressouche, et al., Phys. Rev. B 82, 054414 (2010).

    Article  ADS  Google Scholar 

  43. H. Keller and I. M. Savic, Phys. Rev. B 28, 2638 (1983)

    Article  ADS  Google Scholar 

  44. J. Slivka, H. Keller, and W. Kündig, Phys. Rev. B 30, 3649 (1984).

    Article  ADS  Google Scholar 

  45. Yu. A. Izyumov, Sov. Phys. Usp. 27, 845 (1984).

    Article  ADS  Google Scholar 

  46. R. N. Zare, Angular Momentum (Wiley, New York, 1988; Mir, Moscow, 1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Sobolev.

Additional information

Original Russian Text © A.V. Sobolev, I.A. Presnyakov, V.S. Rusakov, A.M. Gapochka, Ya.S. Glazkova, M.E. Matsnev, D.A. Pankratov, 2017, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 151, No. 6, pp. 1104–1119.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobolev, A.V., Presnyakov, I.A., Rusakov, V.S. et al. Mössbauer study of the modulated magnetic structure of FeVO4 . J. Exp. Theor. Phys. 124, 943–956 (2017). https://doi.org/10.1134/S1063776117060164

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776117060164

Navigation