Skip to main content
Log in

Optical properties of magnetic photonic crystals with an arbitrary magnetization orientation

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We have studied the peculiarities of diffraction of light in magnetic photonic crystals at large values of magnetooptical activity parameter and modulation depth. We have considered the case of an arbitrary angle between the directions of the external static magnetic field and the normal to the layer. The problem has been solved by the modified Ambartsumyan layer summation method. It has been shown that the given system is nonreciprocal with respect to not only circular, but linear polarizations also. In this case, a new type of nonreciprocity is observed (namely, the relation R(α) ≠ R(–α) holds, where R is the reflection coefficient and α is the angle of incidence). It has been demonstrated that in the case of oblique incidence, there appears a new photonic forbidden band that is not selective relative to the polarization of incident light. We have detected strong dependences of reflectance, absorbance, transmittance nonreciprocity, and other characteristics on the angle between the direction of the external static magnetic field and the normal to the layer boundary. Such a system can be used as a controllable polarization filter and a mirror, as well as a source of circular (elliptic) polarization, a controllable optical diode, and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Smolenskii and V. V. Lemanov, Ferrites and Their Technical Application (Nauka, Leningrad, 1975) [in Russian].

    Google Scholar 

  2. K. Zvezdin and V. A. Kotov, Modern Magnetooptics and Magnetooptical Materials (Inst. Phys. Publ., Bristol, Philadelphia, 1997).

    Book  Google Scholar 

  3. V. V. Randoshkin and A. Ya. Chervonenkis, Applied Magnetooptics (Energoatomizdat, Moscow, 1990) [in Russian].

    Google Scholar 

  4. O. V. Ivanov and D. I. Sementsov, Pure Appl. Opt. 6, 455 (1997).

    Article  ADS  Google Scholar 

  5. A. Figotin and I. Vitebsky, Phys. Rev. E 63, 066609 (2001).

    Article  ADS  Google Scholar 

  6. A. Figotin and I. Vitebskiy, Phys. Rev. B 67, 165210 (2003).

    Article  ADS  Google Scholar 

  7. A. B. Khanikaev and M. J. Steel, Opt. Express 17, 5265 (2009).

    Article  ADS  Google Scholar 

  8. S. Sakaguchi and N. Sugimoto, Opt. Commun. 162, 64 (1999).

    Article  ADS  Google Scholar 

  9. A. M. Merzlikin, A. P. Vinogradov, A. V. Dorofeenko, M. Inoue, M. Levy, and A. B. Granovsky, Phys. B 394, 277 (2007).

    Article  ADS  Google Scholar 

  10. A. M. Merzlikin, M. Levy, A. P. Vinogradov, Z. Wu, and A. A. Jalali, Opt. Commun. 283, 4298 (2010).

    Article  ADS  Google Scholar 

  11. F. Jonsson and C. Flytzanis, J. Opt. Soc. Am. B 22, 293 (2005).

    Article  ADS  Google Scholar 

  12. I. L. Lyubchanskii, N. N. Dadoenkova, M. I. Lyubchanskii, E. A. Shapovalov, and T. Rasing, J. Phys. D 36, R277 (2003).

    Article  ADS  Google Scholar 

  13. M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, J. Phys. D 39, R151 (2006).

    Article  ADS  Google Scholar 

  14. H. F. Zhang, S. B. Liu, X. K. Kong, and B. X. Li, Eur. Phys. J. D 67, 169 (2013).

    Article  ADS  Google Scholar 

  15. H. Kato and M. Inoue, J. Appl. Phys. 91, 7017 (2002).

    Article  ADS  Google Scholar 

  16. H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, IEEE Trans. Magn. 38, 3246 (2002).

    Article  ADS  Google Scholar 

  17. W. Smigaj, J. Romero-Vivas, B. Gralak, L. Magdenko, B. Dagens, and M. Vanwolleghem, Opt. Lett. 35, 568 (2010).

    Article  ADS  Google Scholar 

  18. Q. Wang, Z. Ouyang, and Q. Liu, J. Opt. Soc. Am. B 28, 703 (2011).

    Article  ADS  Google Scholar 

  19. S. Eliseeva and D. Sementsov, Phys. Solid State 54, 1981 (2012).

    Article  ADS  Google Scholar 

  20. S. V. Eliseeva, V. A. Ostatochnikov, and D. I. Sementsov, J. Magn. Magn. Mater. 354, 267 (2014).

    Article  ADS  Google Scholar 

  21. R. Abdi-Ghaleh and M. Asad, Eur. Phys. J. D 69, 13 (2015).

    Article  ADS  Google Scholar 

  22. J. L. Arce-Diego, R. Lopez-Ruisanchez, J. M. Lopez-Higuera, and M. A. Muriel, Opt. Lett. 22, 603 (1997).

    Article  ADS  Google Scholar 

  23. G. Wang, J. P. Huang, and K. W. Yu, Opt. Lett. 33, 2200 (2008).

    Article  ADS  Google Scholar 

  24. G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, Adv. Opt. Mater. 1, 10 (2013).

  25. C. Hermann, V. A. Kosobukin, G. Lampel, J. Peretti, V. I. Safarov, and P. Bertrand, Phys. Rev. B 64, 235422 (2001).

    Article  ADS  Google Scholar 

  26. J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, G. Armelles, B. Sepúlveda, Y. Alaverdyan, and M. Käll, Small 4, 202 (2008).

    Article  Google Scholar 

  27. V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, Nat. Nanotechnol. 6, 370 (2011).

    Article  ADS  Google Scholar 

  28. J. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. L. Belotelov, B. Stritzker, and H. Giessen, Nat. Commun. 4, 1599 (2013).

    Article  ADS  Google Scholar 

  29. V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. García-Martín, J. M. García-Martín, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, Nat. Photon. 4, 107 (2010).

    Article  ADS  Google Scholar 

  30. I. F. Gismyatov and D. I. Sementsov, Opt. Spectrosc. 92, 588 (2002).

    Article  ADS  Google Scholar 

  31. A. H. Gevorgyan and G. K. Matinyan, J. Exp. Theor. Phys. 118, 771 (2014).

    Article  ADS  Google Scholar 

  32. A. H. Gevorgyan and M. Z. Harutyunyan, Phys. Rev. E 76, 031701 (2007).

    Article  ADS  Google Scholar 

  33. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, New York, 1977).

    Google Scholar 

  34. A. H. Gevorgyan, Opt. Spectrosc. 91, 762 (2001).

    Article  ADS  Google Scholar 

  35. O. S. Eritsyan, Sov. Phys. Usp. 25, 919 (1982).

    Article  ADS  Google Scholar 

  36. A. H. Gevorgyan, Tech. Phys. 47, 1008 (2002).

    Article  Google Scholar 

  37. M. Scalora, J. P. Dowling, et al., J. Appl. Phys. 76, 2023 (1994).

    Article  ADS  Google Scholar 

  38. L. Poladian, Phys. Rev. E 54, 2963 (1996).

    Article  ADS  Google Scholar 

  39. M. Scalora, D. Tocci, et al., Appl. Phys. Lett. 66, 2324 (1995).

    Article  ADS  Google Scholar 

  40. A. H. Gevorgyan, Tech. Phys. Lett. 29, 819 (2003).

    Article  ADS  Google Scholar 

  41. A. H. Gevorgyan, Tech. Phys. Lett. 34, 22 (2008).

    Article  ADS  Google Scholar 

  42. Z. Yu and Z. Wang, Appl. Phys. Lett. 90, 121133 (2007).

    Article  ADS  Google Scholar 

  43. A. Alberucci and G. Assanto, Opt. Lett. 33, 1641 (2008).

    Article  ADS  Google Scholar 

  44. X. Hu, C. Xin, Z. Li, and Q. Gong, New J. Phys. 12, 023029 (2010).

    Article  ADS  Google Scholar 

  45. X.-B. Kang, W. Tan, et al., Chin. Phys. Lett. 27, 074204 (2010).

    Article  ADS  Google Scholar 

  46. H.-X. Da, Z.-Q. Huang, and Z.-Y. Li, J. Appl. Phys. 108, 063505 (2010).

    Article  ADS  Google Scholar 

  47. C. Xue, H. Jiang, and H. Chen, Opt. Express 18, 7479 (2010).

    Article  ADS  Google Scholar 

  48. Q. Wang, F. Xu, et al., Opt. Express 18, 7340 (2010).

    Article  ADS  Google Scholar 

  49. A. F. Bukhanko, Opt. Spectrosc. 110, 281 (2011).

    Article  ADS  Google Scholar 

  50. S. V. Zhukovsky and A. G. Smirnov, Phys. Rev. A 83, 023818 (2011).

    Article  ADS  Google Scholar 

  51. X. Hu, Z. Li, et al., Adv. Funct. Mat. 21, 1803 (2011).

    Article  Google Scholar 

  52. X. Hu, Z. Li, et al., Plasmonics 6, 619 (2011).

    Article  Google Scholar 

  53. K. Xiu-Bao, T. Wei, et al., Chin. Phys. Lett. 27, 074204 (2010).

    Article  ADS  Google Scholar 

  54. H.-X. Da, Z.-Q. Huang, and Z.-Y. Li, J. Appl. Phys. 108, 063505 (2010).

    Article  ADS  Google Scholar 

  55. C. Menzel, C. Helgert, et al., Phys. Rev. Lett. 104, 253902 (2010).

    Article  ADS  Google Scholar 

  56. M. Kang, J. Chen, et al., Opt. Express. 19, 8347 (2011).

    Article  ADS  Google Scholar 

  57. I. V. Shadrivov, V. A. Fedotov, et al., New J. Phys. 13, 033025 (2011).

    Article  ADS  Google Scholar 

  58. J. Li, J. Zhou, M. Yang, C. Xue, and M. He, Opt. Lett. 11, 030503 (2011).

    Google Scholar 

  59. C. P. Yin, T. B. Wang, and H. Z. Wang, Eur. Phys. J. B 85, 104 (2012).

    Article  ADS  Google Scholar 

  60. H. Zhou, J. Chee, J. Song, and G. Lo, Opt. Express 20, 8256 (2012).

    Article  ADS  Google Scholar 

  61. L. Fan, J. Wang, et al., Science 335, 447 (2012).

    Article  ADS  Google Scholar 

  62. H. Li, Z. Deng, J. Huang, Sh. Fu, and Y. Li, arXiv:1505.02660v2 [physics.optics].

  63. K. Jamshidi-Ghaleh, Z. Safari, and F. Moslemi, Eur. Phys. J. D 69, 95 (2015).

    Article  ADS  Google Scholar 

  64. T. F. Assuncao, E. M. Nasimento, and M. L. Lira, Phys. Rev. E 90, 022901 (2014).

    Article  ADS  Google Scholar 

  65. U. S. Hasar, J. J. Barroso, et al., Photon. Nanostruct.: Fund. Appl. 13, 106 (2015).

    Article  ADS  Google Scholar 

  66. Z. Wang, L. Shi, Y. Liu, X. Xu, and X. Zhang, Sci. Rep. 5, 8657 (2015).

    Article  ADS  Google Scholar 

  67. Y. Zhou, Y.-Q. Dong, et al., Appl. Phys. Lett. 105, 041114 (2014).

    Article  ADS  Google Scholar 

  68. C. Wang, C.-Z. Zhou, and Z.-Y. Li, Opt. Express 19, 26948 (2011).

    Article  ADS  Google Scholar 

  69. Y. Shoji and T. Mizumoto, Sci. Technol. Adv. Mater. 15, 014602 (2014).

    Article  Google Scholar 

  70. L. Lu, J. D. Joannopoulos, and M. Soljacic, Nat. Photon. 8, 821 (2014).

    Article  ADS  Google Scholar 

  71. Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacic, Nature 461, 772 (2009).

    Article  ADS  Google Scholar 

  72. M. Hafezi, E. A. Demler, M. D. Lukin, and J. M. Taylor, Nat. Phys. 7, 907 (2011).

    Article  Google Scholar 

  73. H. Altug, D. Englund, and J. Vuckovic, Nat. Phys. 2, 484 (2006).

    Article  Google Scholar 

  74. P. Lodahi, A. F. van Driel, et al., Nature (London, U. K.) 430, 654 (2004).

    Article  ADS  Google Scholar 

  75. R. V. Nair, A. K. Tiwari, S. Mujumdar, and B. N. Jagatap, Phys. Rev. A 85, 023844 (2012).

    Article  ADS  Google Scholar 

  76. M. Bobrovsky, T. F. Krauss, et al., Appl. Phys. Lett. 75, 1036 (1999).

    Article  ADS  Google Scholar 

  77. C. Santori, D. Fattal, et al., Nature (London, U. K.) 419, 594 (2002).

    Article  ADS  Google Scholar 

  78. J. Kim, O. Benson, H. Kan, and Y. Yamamoto, Nature (London, U. K.) 397, 500 (1999).

    Article  ADS  Google Scholar 

  79. P. Michler, A. Kiraz, et al., Science 290, 2282 (2000).

    Article  ADS  Google Scholar 

  80. A. Kuhn, M. Henric, and G. Rempe, Phys. Rev. Lett. 89, 067901 (2002).

    Article  ADS  Google Scholar 

  81. M. Gratzel, Nature (London, U. K.) 414, 338 (2001).

    Article  ADS  Google Scholar 

  82. L. Zeng, P. Bermel, Y. Yi, et al., Appl. Phys. Lett. 93, 221105 (2008).

    Article  ADS  Google Scholar 

  83. A. H. Gevorgyan, A. Kocharian, and G. A. Vardanyan, Opt. Commun. 259, 455 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Gevorgyan.

Additional information

Original Russian Text © A.H. Gevorgyan, S.S. Golik, 2017, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 152, No. 1, pp. 30–44.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gevorgyan, A.H., Golik, S.S. Optical properties of magnetic photonic crystals with an arbitrary magnetization orientation. J. Exp. Theor. Phys. 125, 22–34 (2017). https://doi.org/10.1134/S1063776117060103

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776117060103

Navigation