Skip to main content
Log in

Effect of polarization on the structure of electromagnetic field and spatiotemporal distribution of e + e pairs generated by colliding laser pulses

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We have studied the production of electron–positron pairs due to polarization of vacuum in the presence of the strong electromagnetic field of two counterpropagating laser pulses. The structure of the electromagnetic field with the circular polarization has been determined using the 3D model of focused laser pulses, which was proposed by Narozhny and Fofanov. Analytic calculations have shown that the electric and magnetic fields are almost parallel to each other in the focal region when the laser pulses are completely transverse in the electric (E-wave) or magnetic (H-wave) field. On the other hand, the electric and magnetic fields are almost orthogonal when laser pulses consist of a mixture of E- and H-waves of the same amplitude. It has been found that although the latter configuration of colliding laser pulses has a much higher pair production threshold, it can generate much shorter electron–positron pulses as compared to the former configuration. The dependence of the production efficiency of pairs and their spatiotemporal distribution on the polarization of laser pulses has been analyzed using the structure of the electromagnetic field in the focal plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. di Piazza, C. Müller, K. Z. Hatsagortsyan, and C. H. Keitel, Rev. Mod. Phys. 84, 1177 (2012).

    Article  ADS  Google Scholar 

  2. F. Sauter, Z. Phys. 69, 742 (1931).

    Article  ADS  Google Scholar 

  3. J. Schwinger, Phys. Rev. 82, 664 (1951).

    Article  ADS  Google Scholar 

  4. V. Yanovsky et al., Opt. Express 16, 2109 (2008).

    Article  ADS  Google Scholar 

  5. D. L. Burke et al., Phys. Rev. Lett. 79, 1626 (1997).

    Article  ADS  Google Scholar 

  6. C. Bula, K. T. McDonald, E. J. Prebys, C. Bamber, S. Boege, T. Kotseroglou, A. C. Melissinos, D. D. Meyerhofer, W. Ragg, D. L. Burke, et al., Phys. Rev. Lett. 76, 3116 (1996).

    Article  ADS  Google Scholar 

  7. T. Tajima and G. Mourou, Phys. Rev. ST Accel. Beams 5, 031301 (2002).

    Article  ADS  Google Scholar 

  8. M. Dunne, Nat. Phys. 2, 2 (2006).

    Article  Google Scholar 

  9. E. Brezin and C. Itzykson, Phys. Rev. D 2, 1191 (1970).

    Article  ADS  Google Scholar 

  10. S. S. Bulanov, Phys. Rev. E 69, 036408 (2004).

    Article  ADS  Google Scholar 

  11. S. S. Bulanov, V. D. Mur, N. B. Narozhny, J. Nees, and V. S. Popov, Phys. Rev. Lett. 104, 220404 (2010).

    Article  ADS  Google Scholar 

  12. S. Bulanov, N. Narozhny, V. Mur, and V. Popov, J. Exp. Theor. Phys. 102, 9 (2006).

    Article  ADS  Google Scholar 

  13. A. R. Bell and J. G. Kirk, Phys. Rev. Lett. 101, 200403 (2008).

    Article  ADS  Google Scholar 

  14. M. Ruf, G. R. Mocken, C. Müller, K. Z. Hatsagortsyan, and C. H. Keitel, Phys. Rev. Lett. 102, 080402 (2009).

    Article  ADS  Google Scholar 

  15. F. Hebenstreit, R. Alkofer, and H. Gies, Phys. Rev. D 82, 105026 (2010).

    Article  ADS  Google Scholar 

  16. E. N. Nerush, I. Y. Kostyukov, A. M. Fedotov, N. B. Narozhny, N. V. Elkina, and H. Ruhl, Phys. Rev. Lett. 106, 035001 (2011).

    Article  ADS  Google Scholar 

  17. C. Kohlfürst, M. Mitter, G. von Winckel, F. Hebenstreit, and R. Alkofer, Phys. Rev. D 88, 045028 (2013).

    Article  ADS  Google Scholar 

  18. A. Wollert, H. Bauke, and C. H. Keitel, Phys. Rev. D 91, 125026 (2015).

    Article  ADS  Google Scholar 

  19. W. Su, M. Jiang, Z. Q. Lv, Y. J. Li, Z. M. Sheng, R. Grobe, and Q. Su, Phys. Rev. A 86, 013422 (2012).

    Article  ADS  Google Scholar 

  20. Q. Su, W. Su, Q. Z. Lv, M. Jiang, X. Lu, Z. M. Sheng, and R. Grobe, Phys. Rev. Lett. 109, 253202 (2012).

    Article  ADS  Google Scholar 

  21. A. Gonoskov, I. Gonoskov, C. Harvey, A. Ilderton, A. Kim, M. Marklund, G. Mourou, and A. Sergeev, Phys. Rev. Lett. 111, 060404 (2013).

    Article  ADS  Google Scholar 

  22. N. Narozhny and M. Fofanov, J. Exp. Theor. Phys. 90, 753 (2000).

    Article  ADS  Google Scholar 

  23. A. Fedotov, Laser Phys. 19, 214 (2009).

    Article  ADS  Google Scholar 

  24. Y. I. Salamin, G. R. Mocken, and C. H. Keitel, Phys. Rev. ST Accel. Beams 5, 101301 (2002).

    Article  ADS  Google Scholar 

  25. A. M. Fedotov, N. B. Narozhny, G. Mourou, and G. Korn, Phys. Rev. Lett. 105, 080402 (2010).

    Article  ADS  Google Scholar 

  26. N. Narozhny, Laser Phys. 15, 1458 (2005).

    Google Scholar 

  27. V. Berestetskii, L. Pitaevskii, and E. Lifshitz, Course of Theoretical Physics, Vol. 4: Quantum Electrodynamics (Nauka, Moscow, 1989; Elsevier Science, Amsterdam, 2012).

    Google Scholar 

  28. L. Landau and E. Lifshitz, The Classical Theory of Fields, 4th ed., vol. 2 of Course of Theoretical Physics (Pergamon, Amsterdam, 1975).

    Google Scholar 

  29. D. J. Griffiths, Introduction to Electrodynamics, 3rd ed. (Prentice Hall, Upper Saddle River, NJ, 1999).

    Google Scholar 

  30. V. Popov, Phys. Lett. A 298, 83 (2002).

    Article  ADS  Google Scholar 

  31. I. Gonoskov, A. Aiello, S. Heugel, and G. Leuchs, Phys. Rev. A 86, 053836 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Banerjee.

Additional information

Original Russian Text © C. Banerjee, M.P. Singh, 2017, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 152, No. 1, pp. 18–29.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, C., Singh, M.P. Effect of polarization on the structure of electromagnetic field and spatiotemporal distribution of e + e pairs generated by colliding laser pulses. J. Exp. Theor. Phys. 125, 12–21 (2017). https://doi.org/10.1134/S1063776117060097

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776117060097

Navigation