Refined dynamic structure factor of a lipid bilayer on scales comparable to its thickness

Statistical, Nonlinear, and Soft Matter Physics
  • 32 Downloads

Abstract

The structural inhomogeneity of a lipid bilayer is an obstacle to applying the classical Canham–Helfrich model to describe its dynamics on nanometer length scales. In this paper, a refined expression for the free energy of a single-component lipid bilayer is used to describe the dynamics of lipid density fluctuations. In particular, the expression with a term involving the gradient of the area per lipid [8] is used for the free energy per lipid. A refined expression has been derived for the dynamic structure factor of a free lipid bilayer in the hydrodynamic region. It leads to differences in the interpretation and values of the bilayer parameters in comparison with the standard model.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. H. Chen, C. Y. Liao, H. W. Huang, et al., Phys. Rev. Lett. 86, 740 (2001).ADSCrossRefGoogle Scholar
  2. 2.
    M. Tarek, D. J. Tobias, S.-H. Chen, and M. L. Klein, Phys. Rev. Lett. 87, 238101 (2001).ADSCrossRefGoogle Scholar
  3. 3.
    E. G. Brandt and O. Edholm, Biophys. J. 96, 1828 (2009).ADSCrossRefGoogle Scholar
  4. 4.
    V. C. Nibali, G. D’Angelo, and M. Tarek, Phys. Rev. E 89, 050301 (2014).CrossRefGoogle Scholar
  5. 5.
    M. Zhernenkov, D. Bolmatov, D. Soloviov, et al., Nat. Commun. 7, 11575 (2016).ADSCrossRefGoogle Scholar
  6. 6.
    U. Seifert and S. A. Langer, Europhys. Lett. 23, S71 (1993).ADSCrossRefGoogle Scholar
  7. 7.
    U. Seifert, Adv. Phys. 46, 13 (1997).ADSCrossRefGoogle Scholar
  8. 8.
    A. F. Bitbol, D. Constantin, and J.-B. Fournier, PLoS ONE 7, e48306 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    N. K. Ailawadi, A. Rahman, and R. Zwanzig, Phys. Rev. A 4, 1616 (1971).ADSCrossRefGoogle Scholar
  10. 10.
    R. D. Mountain, Adv. Mol. Relax. Proc. 9, 225 (1976).CrossRefGoogle Scholar
  11. 11.
    N. Dan, P. Pincus, and S. A. Safran, Langmuir 9, 2768 (1993).CrossRefGoogle Scholar
  12. 12.
    G. Brannigan and F. L. Brown, Biophys. J. 90, 1501 (2006).ADSCrossRefGoogle Scholar
  13. 13.
    H. W. Huang, Biophys. J. 50, 1061 (1986).ADSCrossRefGoogle Scholar
  14. 14.
    C. Nielsen, M. Goulian, and O. S. Andersen, Biophys. J. 74, 1966 (1998).ADSCrossRefGoogle Scholar
  15. 15.
    L. Deseri, M. D. Piccioni, and G. Zurlo, Continuum Mech. Thermodyn. 20, 255 (2008).ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    D. J. Steigmann, Int. J. Non-Lin. Mech. 56, 61 (2013).CrossRefGoogle Scholar
  17. 17.
    S. A. Akimov, P. I. Kuzmin, J. Zimmerberg, et al., J. Electroanal. Chem. 564, 13 (2004).CrossRefGoogle Scholar
  18. 18.
    R. D. Mountain, Rev. Mod. Phys. 38, 205 (1966).ADSCrossRefGoogle Scholar
  19. 19.
    R. J. Bingham, S. W. Smye, and P. D. Olmsted, Europhys. Lett. 111, 18004 (2015).ADSCrossRefGoogle Scholar
  20. 20.
    G. E. Crawford and J. C. Earnshaw, Biophys. J. 52, 87 (1987).CrossRefGoogle Scholar
  21. 21.
    J. P. Boon and P. Deguent, Phys. Rev. A 2, 2542 (1970).ADSCrossRefGoogle Scholar
  22. 22.
    V. E. Zakhvataev, Biophysics 62 (3), 396 (2017).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences,”KrasnoyarskRussia
  2. 2.Siberian Federal UniversityKrasnoyarskRussia

Personalised recommendations