Journal of Experimental and Theoretical Physics

, Volume 124, Issue 6, pp 975–981

Conductivity of the 3D model of a composite with spheroidal inclusions

Electronic Properties of Solid
  • 10 Downloads

Abstract

The solution to the problem of the conductivity of the 3D model of a composite with inclusion having a shape of oblate ellipsoids of revolution (spheroids) has been obtained in a wide range of concentrations. The entire range of variation of the shape of inclusions (from a sphere to an infinitely thin circular disk) has been considered. The relation between the percolation thresholds in this model and the quantities characterizing its effective conductivity in the limit of low concentrations of inclusions has been established.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. L. Efros and B. I. Shklovskii, Phys. Status Solidi B 76, 475 (1976).ADSCrossRefGoogle Scholar
  2. 2.
    G. E. Pike and C. H. Seager, Phys. Rev. B 10, 1421 (1974).ADSCrossRefGoogle Scholar
  3. 3.
    I. Balberg and N. Binenbaum, Phys. Rev. B 28, 3799 (1983).ADSCrossRefGoogle Scholar
  4. 4.
    W. J. Boudville and T. C. McGill, Phys. Rev. B 39, 369 (1989).ADSCrossRefGoogle Scholar
  5. 5.
    E. J. Garboczi, M. F. Thorpe, M. S. de Vries, and A. R. Day, Phys. Rev. A 43, 6473 (1991).ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    J. Tobochnik, M. A. Dubson, M. L. Wilson, and M. F. Thorpe, Phys. Rev. A 40, 5370 (1989).ADSCrossRefGoogle Scholar
  7. 7.
    K. H. Han, J. O. Lee, and Sung–Ik Lee, Phys. Rev. B 44, 6791 (1991).ADSCrossRefGoogle Scholar
  8. 8.
    B. Ya. Balagurov, Tech. Phys. 56, 589 (2011).CrossRefGoogle Scholar
  9. 9.
    B. Ya. Balagurov, Tech. Phys. 57, 1051 (2012).CrossRefGoogle Scholar
  10. 10.
    E. J. Garboczi, K. A. Snyder, J. F. Douglas, and M. F. Thorpe, Phys. Rev. E 52, 819 (1995).ADSCrossRefGoogle Scholar
  11. 11.
    C. D. Lorenz and R. M. Ziff, J. Chem. Phys. 114, 3659 (2001).ADSCrossRefGoogle Scholar
  12. 12.
    D. R. Baker, G. Paul, S. Sreenivasam, and H. E. Stanley, Phys. Rev. E 66, 046136 (2002).ADSCrossRefGoogle Scholar
  13. 13.
    Y. B. Yi, Phys. Rev. E 74, 031112 (2006).ADSCrossRefGoogle Scholar
  14. 14.
    Y. B. Yi and E. Tawerghi, Phys. Rev. E 79, 041134 (2009).ADSCrossRefGoogle Scholar
  15. 15.
    B. Ya. Balagurov, Electrophysical Properties of Composites. Macroscopic Theory (URSS–Lenand, Moscow, 2015) [in Russian].Google Scholar
  16. 16.
    R. J. Landauer, J. Appl. Phys. 23, 779 (1952).ADSCrossRefGoogle Scholar
  17. 17.
    S. Kirkpatrick, Rev. Mod. Phys. 45, 574 (1973).ADSCrossRefGoogle Scholar
  18. 18.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Pergamon, New York, 1984).Google Scholar
  19. 19.
    Y. B. Yi and K. Esmail, J. Appl. Phys. 111, 124903 (2012).ADSCrossRefGoogle Scholar
  20. 20.
    B. I. Shklovskii and A. L. Efros, Sov. Phys. Usp. 18, 845 (1975).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations