Skip to main content
Log in

Monte Carlo Glauber wounded nucleon model with meson cloud

  • Nuclei, Particles, Fields, Gravitation, and Astrophysics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We study the effect of the nucleon meson cloud on predictions of the Monte Carlo Glauber wounded nucleon model for AA, pA, and pp collisions. From the analysis of the data on the charged multiplicity density in AA collisions we find that the meson–baryon Fock component reduces the required fraction of binary collisions by a factor of ~2 for Au + Au collisions at √s = 0.2 TeV and ~1.5 for Pb + Pb collisions at √s = 2.76 TeV. For central AA collisions, the meson cloud can increase the multiplicity density by ~16–18%. We give predictions for the midrapidity charged multiplicity density in Pb + Pb collisions at √s = 5.02 TeV for the future LHC run 2. We find that the meson cloud has a weak effect on the centrality dependence of the ellipticity ϵ2 in AA collisions. For collisions of the deformed uranium nuclei at √s = 0.2 TeV, we find that the meson cloud may improve somewhat agreement with the data on the dependence of the elliptic flow on the charged multiplicity for very small centralities defined via the ZDCs signals. We find that the meson cloud may lead to a noticeable reduction of ϵ2 and the size of the fireball in pA and pp collisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Huovinen, Int. J. Mod. Phys. E 22, 1330029 (2013); arXiv:1311.1849.

    Article  ADS  Google Scholar 

  2. R. Derradi de Souza, T. Koide, and T. Kodama, Prog. Part. Nucl. Phys. 86, 35 (2016); arXiv:1506.03863.

    Article  ADS  Google Scholar 

  3. U. Heinz and R. Snellings, Ann. Rev. Nucl. Part. Sci. 63, 123 (2013); arXiv:1301.2826.

    Article  ADS  Google Scholar 

  4. H. Song, S. A. Bass, U. Heinz, and T. Hirano, Phys. Rev. C 83, 054910 (2011); Phys. Rev. C 86, 059903(E) (2012); arXiv:1101.4638.

    Article  ADS  Google Scholar 

  5. B. Schenke, P. Tribedy, and R. Venugopalan, Phys. Rev. Lett. 108, 252301 (2012); arXiv:1202.6646.

    Article  ADS  Google Scholar 

  6. B. Schenke, P. Tribedy, and R. Venugopalan, Phys. Rev. C 86, 034908 (2012); arXiv:1206.6805.

    Article  ADS  Google Scholar 

  7. A. Bialas, M. Bleszynski, and W. Czyz, Nucl. Phys. B 111, 461 (1976).

    Article  ADS  Google Scholar 

  8. D. Kharzeev and M. Nardi, Phys. Lett. B 507, 121 (2001); nucl-th/0012025.

    Article  ADS  Google Scholar 

  9. L. D. McLerran and R. Venugopalan, Phys. Rev. D 49, 2233 (1994); hep-ph/9309289.

    Article  ADS  Google Scholar 

  10. N. N. Nikolaev and B. G. Zakharov, Z. Phys. C 49, 607 (1991); Z. Phys. C 53, 331 (1992).

    Article  Google Scholar 

  11. V. Barone, M. Genovese, N. N. Nikolaev, E. Predazzi, and B. G. Zakharov, Z. Phys. C 58, 541 (1993).

    Article  ADS  Google Scholar 

  12. N. N. Nikolaev and B. G. Zakharov, Phys. Lett. B 332, 184 (1994); hep-ph/9403243.

    Article  ADS  Google Scholar 

  13. F. E. Low, Phys. Rev. D 12, 163 (1975).

    Article  ADS  Google Scholar 

  14. E. V. Shuryak, Rev. Mod. Phys. 65, 1 (1993).

    Article  ADS  Google Scholar 

  15. A. Casher, H. Neuberger, and S. Nussinov, Phys. Rev. D 20, 179 (1979).

    Article  ADS  Google Scholar 

  16. E. Gotsman and S. Nussinov, Phys. Rev. D 22, 624 (1980).

    Article  ADS  Google Scholar 

  17. N. N. Nikolaev, B. G. Zakharov, and V. R. Zoller, JETP Lett. 59, 6 (1994); hep-ph/9312268.

    ADS  Google Scholar 

  18. N. N. Nikolaev and B. G. Zakharov, Phys. Lett. B 327, 149 (1994); hep-ph/9402209.

    Article  ADS  Google Scholar 

  19. R. Fiore, N. N. Nikolaev, and V. R. Zoller, JETP Lett. 99, 363 (2014); arXiv:1403.1950.

    Article  ADS  Google Scholar 

  20. A. Bialas and M. Jezabek, Phys. Lett. B 590, 233 (2004); hep-ph/0403254.

    Article  ADS  Google Scholar 

  21. A. Bialas, A. Bzdak, and R. Peschanski, Phys. Lett. B 665, 35 (2008); arXiv:0804.2364.

    Article  ADS  Google Scholar 

  22. A. Bzdak, Acta Phys. Polon. B 41, 2471 (2010); arXiv:0906.2858.

    Google Scholar 

  23. B. Alver, M. Baker, C. Loizides, and P. Steinberg, arXiv:0805.4411.

  24. W. Broniowski, M. Rybczynski, and P. Bozek, Comput. Phys. Commun. 180, 69 (2009); arXiv:0710.5731.

    Article  ADS  Google Scholar 

  25. M. Rybczynski, G. Stefanek, W. Broniowski, and P. Bozek, Comput. Phys. Commun. 185, 1759 (2014); arXiv:1310.5475.

    Article  ADS  Google Scholar 

  26. B. B. Back et al. (PHOBOS Collab.), Phys. Rev. C 70, 021902 (2004); nucl-ex/0405027.

    Article  ADS  Google Scholar 

  27. B. I. Abelev, et al. (STAR Collab.), Phys. Rev. C 79, 034909 (2009); arXiv:0808.2041.

    Article  ADS  Google Scholar 

  28. M. Rybczynski and W. Broniowski; arXiv:1510.08242.

  29. L. Adamczyk et al. (STAR Collab.), Phys. Rev. Lett. 115, 222301 (2015); arXiv:1505.07812.

    Article  ADS  Google Scholar 

  30. P. Filip, R. Lednicky, H. Masui, and N. Xu, Phys. Rev. C 80, 054903 (2009).

    Article  ADS  Google Scholar 

  31. S. A. Voloshin, Phys. Rev. Lett. 105, 172301 (2010); arXiv:1006.1020.

    Article  ADS  Google Scholar 

  32. J. S. Moreland, J. E. Bernhard, and S. A. Bass, Phys. Rev. C 92, 011901 (2015); arXiv:1412.4708.

    Article  ADS  Google Scholar 

  33. S. Chatterjee et al., Phys. Lett. B 758, 269 (2016); arXiv:1510.01311.

    Article  ADS  Google Scholar 

  34. A. Bialas, W. Czyz, and W. Furmanski, Acta Phys. Polon. B 8, 585 (1977).

    Google Scholar 

  35. A. Bialas and W. Czyz, Acta Phys. Polon. B 10, 831 (1979).

    Google Scholar 

  36. P. Bozek, W. Broniowski, and M. Rybczynski; arXiv:1604.07697.

  37. A. Bialas and A. Bzdak, Phys. Rev. C 77, 034908 (2008); arXiv:0707.3720.

    Article  ADS  Google Scholar 

  38. S. Eremin and S. Voloshin, Phys. Rev. C 67, 064905 (2003); nucl-th/0302071.

    Article  ADS  Google Scholar 

  39. C. Loizides, arXiv:1603.07375.

  40. S. S. Adler et al. (PHENIX Collab.), Phys. Rev. C 89, 044905 (2014); arXiv:1312.6676.

    Article  ADS  Google Scholar 

  41. J. Speth and A. W. Thomas, Adv. Nucl. Phys. 24, 83 (1997).

    Google Scholar 

  42. S. D. Drell and K. Hiida, Phys. Rev. Lett. 7, 199 (1961).

    Article  ADS  Google Scholar 

  43. R. T. Deck, Phys. Rev. Lett. 13, 169 (1964).

    Article  ADS  Google Scholar 

  44. A. B. Kaidalov, Phys. Rep. 50, 157 (1979).

    Article  ADS  Google Scholar 

  45. M. L. Good and W. D. Walker, Phys. Rev. 120, 1857 (1960).

    Article  ADS  Google Scholar 

  46. K. G. Boreskov, A. B. Kaidalov, and L. A. Ponomarev, Sov. J. Nucl. Phys. 17, 669 (1973); Sov. J. Nucl. Phys. 19, 514 (1974).

    Google Scholar 

  47. K. G. Boreskov, A. A. Grigorian, and A. B. Kaidalov, Sov. J. Nucl. Phys. 24, 411 (1976).

    Google Scholar 

  48. B. G. Zakharov and V. N. Sergeev, Sov. J. Nucl. Phys. 38, 947 (1983).

    Google Scholar 

  49. B. G. Zakharov and V. N. Sergeev, Sov. J. Nucl. Phys. 28, 689 (1978).

    Google Scholar 

  50. V. N. Gribov, Sov. Phys. JETP 29, 483 (1969).

    ADS  Google Scholar 

  51. A. Kaidalov, Nucl. Phys. A 525, 39 (1991).

    Article  ADS  Google Scholar 

  52. K. Aamodt et al. (ALICE Collab.), Phys. Rev. Lett. 106, 032301 (2011); arXiv:1012.1657.

    Article  ADS  Google Scholar 

  53. B. G. Zakharov, JETP Lett. 104, 6 (2016); arXiv:1605. 06012.

    Article  ADS  Google Scholar 

  54. V. R. Zoller, Z. Phys. C 60, 141 (1993).

    Article  ADS  Google Scholar 

  55. V. R. Zoller, Z. Phys. C 53, 443 (1992).

    Article  ADS  Google Scholar 

  56. W. Melnitchouk, J. Speth, and A. W. Thomas, Phys. Rev. D 59, 014033 (1998); hep-ph/9806255.

    Article  ADS  Google Scholar 

  57. H. Holtmann, A. Szczurek, and J. Speth, Nucl. Phys. A 596, 631 (1996); hep-ph/9601388.

    Article  ADS  Google Scholar 

  58. J. D. Sullivan, Phys. Rev. D 5, 1732 (1972).

    Article  ADS  Google Scholar 

  59. A. Szczurek and J. Speth, Nucl. Phys. A 555, 249 (1993).

    Article  ADS  Google Scholar 

  60. A. B. Kaidalov and M. G. Poghosyan, Eur. Phys. J. C 67, 397 (2010); arXiv:0910.2050.

    Article  ADS  Google Scholar 

  61. A. Capella and E. G. Ferreiro, Eur. Phys. J. C 72, 1936 (2012); arXiv:1110.6839.

    Article  ADS  Google Scholar 

  62. B. Müller and K. Rajagopal, Eur. Phys. J. C 43, 15 (2005); hep-ph/0502174.

    Article  ADS  Google Scholar 

  63. W. Broniowski and W. Florkowski, Phys. Rev. C 65, 024905 (2002); nucl-th/0110020.

    Article  ADS  Google Scholar 

  64. D. Teaney and L. Yan, Phys. Rev. C 83, 064904 (2011); arXiv:1010.1876.

    Article  ADS  Google Scholar 

  65. E. Retinskaya, M. Luzum, J.-Y. Ollitrault, Nucl. Phys. A 926, 152 (2014); arXiv:1401.3241.

    Article  ADS  Google Scholar 

  66. C. Albajar et al. (UA1 Collab.), Nucl. Phys. B 335, 261 (1990).

    Article  ADS  Google Scholar 

  67. J. Adam et al. (ALICE Collab.); arXiv:1509.07541.

  68. B. Abelev et al. (ALICE Collab.), Eur. Phys. J. C 73, 2456 (2013); arXiv:1208.4968.

    Article  ADS  Google Scholar 

  69. R. E. Ansorge et al. (UA5 Collab.), Z. Phys. C 43, 357 (1989).

    ADS  Google Scholar 

  70. M. Rybczynski, W. Broniowski, and G. Stefanek, Phys. Rev. C 87, 044908 (2013); arXiv:1211.2537.

    Article  ADS  Google Scholar 

  71. A. Goldschmidt, Z. Qiu, C. Shen, and U. Heinz; arXiv:1502.00603.

  72. H. Niemi, G. S. Denicol, H. Holopainen, and P. Huovinen, Phys. Rev. C 87, 054901 (2013); arXiv:1212.1008.

    Article  ADS  Google Scholar 

  73. Z. Qiu and U. W. Heinz, Phys. Rev. C 84, 024911 (2011); arXiv:1104.0650.

    Article  ADS  Google Scholar 

  74. A. Goldschmidt, Z. Qiu, C. Shen, and U. Heinz, Phys. Rev. C 92, 044903 (2015); arXiv:1507.03910.

    Article  ADS  Google Scholar 

  75. A. J. Kuhlman and U. W. Heinz, Phys. Rev. C 72, 037901 (2005); nucl-th/0506088.

    Article  ADS  Google Scholar 

  76. E. V. Shuryak, Phys. Lett. B 78, 150 (1978).

    Article  ADS  Google Scholar 

  77. S. Chatrchyan et al. (CMS Collab.), Phys. Lett. B 718, 795 (2013); arXiv:1210.5482.

    Article  ADS  Google Scholar 

  78. B. Abelev et al. (ALICE Collab.), Phys. Lett. B 719, 29 (2013); arXiv:1212.2001.

    Article  ADS  Google Scholar 

  79. G. Aad et al. (ATLAS Collab.), Phys. Rev. Lett. 110, 182302 (2013); arXiv:1212.5198.

    Article  ADS  Google Scholar 

  80. S. Chatrchyan et al. (CMS Collab.), J. High Energy Phys. 1009, 091 (2010); arXiv:1009.4122.

    Google Scholar 

  81. B. G. Zakharov, Phys. Rev. Lett. 112, 032301 (2014); arXiv:1307.3674.

    Article  ADS  Google Scholar 

  82. B. G. Zakharov, J. Phys. G 41, 075008 (2014); arXiv:1311.1159.

    Article  ADS  Google Scholar 

  83. W. Broniowski, P. Bozek, M. Rybczynski, and E. R. Arriola, Acta Phys. Polon. Supp. 8, 301 (2015); arXiv:1506.04362.

    Article  Google Scholar 

  84. P. Bozek, Acta Phys. Polon. B 41, 837 (2010); arXiv:0911.2392.

    Google Scholar 

  85. M. Habich, G. A. Miller, and P. Romatschke, Eur. Phys. J. C 76, 408 (2016); arXiv:1512.05354.

    Article  ADS  Google Scholar 

  86. J. Adam et al. (ALICE Collab.), Phys. Rev. C 91, 064905 (2015); arXiv:1412.6828.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. G. Zakharov.

Additional information

Published in Russian in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 151, No. 6, pp. 1011–1030.

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharov, B.G. Monte Carlo Glauber wounded nucleon model with meson cloud. J. Exp. Theor. Phys. 124, 860–876 (2017). https://doi.org/10.1134/S1063776117050089

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776117050089

Navigation