Skip to main content
Log in

Soft X-ray absorption spectroscopy of titanium dioxide nanopowders with cobalt impurities

  • Solids and Liquids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The charge states of the cobalt ions in TiO2 nanopowders with the anatase lattice are studied by soft X-ray absorption spectroscopy. It is found that, at a low cobalt impurity concentration (1.8 at %), the cobalt ions with an oxidation state 2+ are mainly located in the tetrahedral (T d ) environment of oxygen ions. Amorphous titanium dioxide exists on the sample surface before heat treatment. Annealing in vacuum or hydrogen leads to the enrichment of the nanoparticle surfaces with Co2+ ions, a change in the coordination of the remaining part of cobalt ions from octahedral to tetrahedral, stabilization of the anatase structure, and the disappearance of the amorphous phase. The crystal lattice of the samples with a relatively high cobalt concentration (12 at %) is distorted, and annealing does not cause the disappearance of the amorphous phase of TiO2. Cobalt is reduced to its metallic state upon hydrogen annealing of the samples with a high cobalt concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Ohno, Science 281, 951 (1998).

    Article  ADS  Google Scholar 

  2. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000).

    Article  ADS  Google Scholar 

  3. Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara, and H. Koinuma, Science 291, 854 (2001).

    Article  ADS  Google Scholar 

  4. S. A. Chambers, S. Thevuthasan, R. F. C. Farrow, R. F. Marks, J. U. Thiele, L. Folks, M. G. Samant, A. J. Kellock, N. Ruzycki, D. L. Ederer, and U. Diebold, Appl. Phys. Lett. 79, 3467 (2001).

    Article  ADS  Google Scholar 

  5. W. K. Park, R. J. Ortega-Hertogs, J. S. Moodera, A. Punnoose, and M. S. Seehra, J. Appl. Phys. 91, 8093 (2002).

    Article  ADS  Google Scholar 

  6. A. Punnoose, M. S. Seehra, W. K. Park, and J. S. Moodera, J. Appl. Phys. 93, 7867 (2003).

    Article  ADS  Google Scholar 

  7. P. A. Stampe, R. J. Kennedy, Yan Xin, and J. S. Parker, J. Appl. Phys. 93, 7864 (2003).

    Article  ADS  Google Scholar 

  8. D. H. Kim, J. S. Yang, K. W. Lee, S. D. Bu, T. W. Noh, S.-J. Oh, Y.-W. Kim, J.-S. Chung, H. Tanaka, H. Y. Lee, and T. Kawai, Appl. Phys. Lett. 81, 2421 (2002).

    Article  ADS  Google Scholar 

  9. J.-Y. Kim, J.-H. Park, B.-G. Park, H.-J. Noh, S.-J. Oh, J. S. Yang, D.-H. Kim, S. D. Bu, T.-W. Noh, H.-J. Lin, H.-H. Hsieh, and C. T. Chen, Phys. Rev. Lett. 90, 017401 (2003).

    Article  ADS  Google Scholar 

  10. H. Toyosaki, T. Fukumura, Y. Yamada, K. Nakajima, T. Chikyow, T. Hasegawa, H. Koinuma, and M. Kawasaki, Nat. Mater. 3, 221 (2004).

    Article  ADS  Google Scholar 

  11. S. R. Shinde, S. B. Ogale, S. Das Sarma, J. R. Simpson, H. D. Drew, S. E. Lofland, C. Lanci, J. P. Buban, N. D. Browning, V. N. Kulkarni, J. Higgins, R. P. Sharma, R. L. Greene, and T. Venkatesan, Phys. Rev. B 67, 115211 (2003).

    Article  ADS  Google Scholar 

  12. M. Venkatesan, C. B. Fitzgerald, and J. M. D. Coey, Nature 430, 630 (2004).

    Article  ADS  Google Scholar 

  13. J. M. D. Coey, M. Venkatesan, and C. B. Fitzgerald, Nat. Mater. 4, 173 (2005).

    Article  ADS  Google Scholar 

  14. M. Hachisu, K. Mori, K. Hyodo, S. Morimoto, T. Yamazaki, and Y. Ichiyanagi, AIP Conf. Proc. 1649, 20 (2015).

    Article  ADS  Google Scholar 

  15. B.-S. Jeong, Y. W. Heo, D. P. Norton, A. F. Hebard, J. D. Budai, and Y. D. Park, Thin Solid Films 488, 194 (2005).

    Article  ADS  Google Scholar 

  16. L. F. Liu, J. F. Kang, Y. Wang, H. Tang, L. G. Kong, L. Sun, X. Zhang, and R. Q. Han, J. Magn. Magn. Mater. 308, 85 (2007).

    Article  ADS  Google Scholar 

  17. B. Leedahl, D. A. Zatsepin, D. W. Boukhvalov, E. Z. Kurmaev, R. J. Green, I. S. Zhidkov, S. S. Kim, L. Cui, N. V. Gavrilov, S. O. Cholakh, and A. Moewes, J. Phys. Chem. C 118, 28143 (2014).

    Article  Google Scholar 

  18. K. Griffin Roberts, M. Varela, S. Rashkeev, S. T. Pantelides, S. J. Pennycook, and Kannan M. Krishnan, Phys. Rev. B 78, 014409 (2008).

    Article  ADS  Google Scholar 

  19. O. Yildirim, S. Cornelius, A. Smekhova, G. Zykov, E. A. Gan’shina, A. B. Granovsky, R. Hübner, C. Bähtz, and K. Potzger, J. Appl. Phys. 117, 183901 (2015).

    Article  ADS  Google Scholar 

  20. W. Yan, Z. Sun, Z. Pan, Q. Liu, T. Yao, Z. Wu, C. Song, F. Zeng, Y. Xie, T. Hu, and S. Wei, Appl. Phys. Lett. 94, 042508 (2009).

    Article  ADS  Google Scholar 

  21. S. Müller, PhD Thesis (The Brandenburg Univ. Technol., 2010).

    Google Scholar 

  22. K. Mamiya, T. Koide, A. Fujimori, H. Tokano, H. Manaka, A. Tanaka, H. Toyosaki, T. Fukumura, and M. Kawasaki, Appl. Phys. Lett. 89, 062506 (2006).

    Article  ADS  Google Scholar 

  23. R. Pärna, U. Joost, E. Nömmiste, T. Käämbre, A. Kikas, I. Kuusik, M. Hirsimäki, I. Kinka, and V. Kisand, Appl. Surf. Sci. 257, 6897 (2011).

    Article  ADS  Google Scholar 

  24. T. E. de Souza, A. Mesquita, A. O. de Zevallos, F. Beron, K. R. Pirota, P. P. Neves, A. C. Doriguetto, and H. B. de Carvalho, J. Phys. Chem. C 117, 13252 (2013).

    Article  Google Scholar 

  25. S. Sharma, N. Thakur, R. K. Kotnala, and K. C. Verma, J. Cryst. Growth 321, 19 (2011).

    Article  ADS  Google Scholar 

  26. A. Ye. Yermakov, G. S. Zakharova, M. A. Uimin, M. V. Kuznetsov, L. S. Molochnikov, S. F. Konev, A. S. Konev, A. S. Minin, V. V. Mesilov, V. R. Galakhov, A. S. Volegov, A. V. Korolyov, A. F. Gubkin, A. M. Murzakayev, A. D. Svyazhin, and K. V. Melanin, J. Phys. Chem. C 120, 28857 (2016).

    Article  Google Scholar 

  27. F. M. F. de Groot, M. O. Figueiredo, M. J. Basto, M. Abbate, H. Petersen, and J. C. Fuggle, Phys. Chem. Miner. 19, 140 (1992).

    Article  ADS  Google Scholar 

  28. E. Stavitski and F. M. F. de Groot, Micron 41, 687 (2010).

    Article  Google Scholar 

  29. F. M. F. de Groot, Z. W. Hu, M. F. Lopez, G. Kaindl, F. Guillot, and M. Tronc, J. Chem. Phys. 101, 6570 (1994).

    Article  ADS  Google Scholar 

  30. A. M. Hibberd, H. Q. Doan, E. N. Glass, F. M. F. de Groot, C. L. Hill, and T. Cuk, J. Phys. Chem. C 119, 4173 (2015).

    Article  Google Scholar 

  31. J. Rodríguez-Carvajal, Physica B 192, 55 (1993).

    Article  ADS  Google Scholar 

  32. E. Stoyanov, F. Langenhorst, and S. Steinle-Neumann, Am. Mineralog. 92, 577 (2007).

    Article  ADS  Google Scholar 

  33. P. Krüger, Phys. Rev. B 81, 1251 (2010).

    Article  Google Scholar 

  34. W. T. Geng and K. S. Kim, Solid State Commun. 129, 741 (2004).

    Article  ADS  Google Scholar 

  35. R. Amadelli, L. Samiolo, A. Maldotti, A. Molinari, M. Valigi, and D. Gazzoli, Int. J. Photoenergy 2008, 853753 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Mesilov.

Additional information

Original Russian Text © V.V. Mesilov, V.R. Galakhov, M.S. Udintseva, A.Ye. Yermakov, M.A. Uimin, G.S. Zakharova, D.A. Smirnov, A.F. Gubkin, E.A. Sherstobitova, 2017, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 151, No. 6, pp. 1066–1072.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mesilov, V.V., Galakhov, V.R., Udintseva, M.S. et al. Soft X-ray absorption spectroscopy of titanium dioxide nanopowders with cobalt impurities. J. Exp. Theor. Phys. 124, 908–913 (2017). https://doi.org/10.1134/S106377611705003X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377611705003X

Navigation